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Dealing with missing data

* Almost all dataset has missing: Ranging from a few for several people to
many missing for a large proportion of individuals

* How to handle missing data? There are several methods, but any choice
rests on assumptions about the pattern of missingness.

— Complete Case Method: Exclude all individuals with (even single)
missing data

* It seems to ignore the missing data, but its justification relies on a
hypothesis about why the data are missing: Missing occurs
randomly, unrelated to any measured or unmeasured variables

* By R, if original dataset is X, subset(X, complete.cases(X)).

* Simple and easy, but not optimal because (1) if missing occurs not
randomly, removal causes bias, (2) removal results in loss of data
(Even if only 1% of individuals have missing for each variable, to
use 50 variables, 39% (=1 — 0.99°%) of datasets are removed).

— Missing Indicator Method: Instead of excluding individuals with
missing data, adding a flag for each variable with missing data,
typically as a new binary (0/1) variable (called as indicator variable),
where 1 means missing. It relies on the same hypothesis (missing
occurs randomly) with complete case method.

— Imputations — See, next slide
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Imputations X

* A good tutorial paper: https://doi.org/10.1016/j.cjca.2020.11.010

* Single imputation: Filling in the missing values with one set of plausible values.
Susceptible to bias if the missing values are not missing at random (non-existing
data are added — less variability — narrow confidence intervals)

To use the mean of the nonmissing value for that variable

To identify important strata of individuals and use the mean of the nonmissing
values for that stratum

To sample an imputed value randomly from the set of observed values for
those whose data are not missing “hot deck imputation”

For longitudinal research, missing value can be imputed from that individual’s
last recorded observation “last observation carried forward”

* Multiple imputation: To address the problems of bias and incorrect precision,
Imputing the missing value using a regression model as prediction tool.
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To Eredict the most plausible value to substitute for what is missing, based on
all known data, which may include study outcome

Complicated, but the process can be automatic_allﬁap lied using statistical
software packages (such as mice and Amelia in R): The imputation is
repeated 20 times or more (thus “multiple” imputation) and integrated
(averaged across all the imputed datasets), to address the issue of false
precision from adding data, with adding the error terms.

It appears to be a robust method that outperforms other methods in many
circumstances.

To use Amelia, see https://gking.harvard.edu/amelia


https://doi.org/10.1016/j.cjca.2020.11.010
https://gking.harvard.edu/amelia
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Most imputation techniques need the
knowledge to clarify the relationships
among variables each other — Causal
diagrams are useful

Figure 15.1 (source: Lipsky and

enland, 2022)

https://www.researchgate.net/publicatio
n/358932233 Causal Directed Acyclic
_Graphs
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E is associated with O if there is an
?hpen (unblocked) path between
em

The association may be mediated
via one or more other variables (M)

E and O are directionally connected:

E is cause of O

If we control for M in the analysis,
we block the path from E to
through M, direct effect (E — O)
remains

E and O are independent if there is
no path connecting them or every
path connecting them is blocked (=
directionally separated)

Confounder
(C)
Collider
/ (S) \
Exposure Outcome

(E)

(®)
\ /
Mediator

(M)

Figure 15.1 Directed acyclic graph (DAG) illustrating
directed (or causal) and nondirected (or bias) paths.

* Nondirected paths are potential sources
of bias.

~ When the third variable is associated
with E and is a risk factor of O, it's
confounding: E «— C — O (So called
“backdoor” path, unblocked)

When a variable is a consequence
of both E and O, it's a collider:

E —- S <« O, this path is blocked by
the collider. If this variable is
ignored, no bias, but if it's adjusted
(=opening backdoor) in analyss, it
causes bias. 4


https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs
https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs
https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs

Graphical Connection, Association,

S

and Causation

* Collider bias explains the
observations that smoking appeared
to be protective against serious
COVID-19: Suffering from smoking-
related illness and severe COVID-19
both increase risk of hospitalization.
Those 2 risk factors are truly
unassociated.

* Assumin_? there are only 2 reasons
for hospitalization and anyone with
either risk gets hospitalized

* Table 15.1: A total of 5+45+95 people
are hospitalized, no association

* Table 15.2: Wihout 855 with neither
risk factor. Strong negative
association exists — All negative for
smoking have COVID-19, and vise
versa.

* By conditioning on the collider of
hospitalization, we may open a

backdoor path between smoking and
N -19, also called as Berksonian
ias.
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Table 15.1 Lack of association in general
population

Smoking No Total
Smoking
COVID-19 ) 45 50
infection
No COVID-19 95 855 950
infection
Total 100 900 1000

Table 15.2 lllustrating association among
hospitalized patients

Smoking No Total
Smoking
COVID-19 ) 45 50
infection
No COVID-19 95 0 95
infection

Total 100 45 145
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Time-dependent variables <

Exposures change over time — time-
varying exposures Co——C;

Components of diet or chronic
medication use occur daily or vary
seasonally

— Radiation exposure during a

mammogram occur infrequently and
sporadicgally y Eo — E. D

A simplistic way is to ignore the time

variation: Compare ever exposed vs never . : : . .
exposed — Such a dichotomous exposure Figure 15.2 Directed acyclic graph (DAG) illustrating

definition cannot capture detailed history of time-varying confounding.
exposure

By taking the exposure history into account ° Consider a study ev_aIL_Jatln% the effect of

in the exposure definition (eg. cumulative asthma rescue mediation (E) on

measures of smoking such a pack-years), pulmonary function (D).

it's improved * The effect of medication is confounded by

Potential confounders: unpredictably recent severity of asthma symptoms (C).

changing blood pressure, BMI, cholesterol, ¢ Negative feedback bias the effect of

]]o_hysmal activity, exposures to sunlight, ... treatment to result in apparent no benefit
he exposure at some time affecting the of the medication

subsequent exposure (Figure 15.2) * To solve it, g-methods (g-formula, marginal

C « E: C is confounder ﬁa”d thus should structural models, structural nested

be controlled) and causal intermediate (and models) can be applied: These allow for

thus should not be controlled) — Dilemma stepwise feedbacﬁ between time-varying

treatments and time-varying confounders.
1/13/26 6



g-methods

* |In Japanese, please see
https://www.m.u-tokyo.ac.jp/sph/wp-content/uploads/2024/09/3ee194aec0a51beb45cd166123592ac1.pdf

* Naimi Al et al. (2017) An introduction to g methods. Int J Epidemiol
46(2): 756-762. PMID: 28039382; PMCID: PMC6074945. (ref.14)
https://doi.org/10.1093/ije/dyw323

* g-methods estimate contrasts of potential outcomes under a less
restrictive set of assumptions than standard regression methods.

~ Inverse probability weighting generates a pseudo-population
in which exposures are independent of confounders, enabling
estimation of marginal structural model parameters.

— g-estimation exploits the conditional independence between the
exposure and potential outcomes to estimate structural nested
model parameters. In R, gesttools package can be used.
https://doi.org/10.1353/0bs.2022.0003

— The g-formula models the joint density of the observed data to
generate potential outcomes under different exposure scenarios.
In R, gfoRmula (https://doi.org/10.1016/j.patter.2020.100008)

package is available.
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https://doi.org/10.1353/obs.2022.0003
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Instrumental variables X

* Conditional exchangeability: The * Itimplies
assumption of no unmeasured :
confounding of the exposure effect to - There is no path from Zto O
consider that the experiences of the that does not go through E

exposed and unexposed are
exchangeable.

- E — O (no confounding)

- E+«— C— O; E— O (blocking the
backdoor path by controlling all
confounders)

* This is untestable. The threat of
unmeasured confounding remains
one of the biggest challenges in

¢ of the bi 7 UcC
epidemiologic research
* Using instrumental variable (Z) in
Figure 15.4 can be applicable if some
of the confounders remain

unmeasured (U)
— Zis associated with E, does not E——O

share any causes with O, has
relation to O only through E Figure 15.4 Directed acyclic graph (DAG)
(exclusion restriction) which includes an instrumental variable Z
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Instrumental variable in the context of /xos:
. AN
experiments ’

* The conditions of applicability of instrumental variable is related to random
assignment to a treatment or intervention in a double-blind clinical trial.

* First, the treatment assignment is strongly associated with the actual exposure,
because participants are much more likely to receive a given treatment if they are
assigned to receive it.

~ (eg.) The people in treatment group and control group may change their mind
about participation.

* Second, because treatment is assi?ned randomly, all risk factors for the outcome
will be balanced between treatment groups in expectation.

~— Main goal of randomization.

* Third, because the trial is double-blind and therefore neither the patients nor the
providers know the assignment, the only way in which treatment assignment can
affect the outcome is through the causal action of actual treatment.

* From those 3 considerations, random assignment meets the conditions needed
as instrumental variable.

* To preserve this benefit, the main effect measure of interest must be ITT
(intention-to-treat), rather than actual treatment (=average treatment effect), [the
effect of ITT]/[association between Z and O = measure of compliance]

~ If the compliance is perfect, denominator = 1 — the average treatment effect
equals to the intention-to-treat effect.

— IfITT effect is corrected for the amount of noncompliance to represent the
effect if everyone is compliant

1/13/26 9



Instrumental variables in the context of/x OBE)
. . N
observational studies ’

* The prospect for using an instrumental variable hinges on whether we can
identify a variable as random treatment assignment — Quasi-experimental study

* Genetic variants that influence phenotypes offer one such possibility: Mendelian
randomization studies

~ (eg.) Alcohol consumption associates with many behavioral and
environmental factors. In cohort/case-control studies, those factors ma¥
confound associations between alcohol use and health outcomes. But flusher
who has malfunctionin%; variant gene in ALDH feel urlllple_asant to drink alcohol
and thus associates with less alcohol consumption. Having less active ALDH
may be an instrumental variable to study the health effect of alcohol
consumption, but there are many challenges.

* Can we find genes affecting the exposures of interest?

* ﬁ\rle ’%hle?associations between genotype and phenotype too weak to be
elpful

* Can we be certain that the other assumptions for instrumental variables
are met?

* Beyond Mendelian randomization, there are several other sources of random
variation which can be exploited in instrumental variable analysis — “preference

~— Physicians may have a preference to prescribe one medication over another
— Some hospitals may prefer more aggressive treatment of certain conditions

— Such provider, facility, or even region-based preferences can be used as an
instrumental variable.

1/13/26 10



Challenges with instrumental variable /koz
AN
analyses ’

* The biggest challenge is that we can never prove that a variable is a valid
iInstrument
— The first condition (association between the instrument and the exposure) can

be empirically verified to some extent. No clear cut-off
— The second and third conditions may be theoretically justified, but not
empirically proven.
* The balance of risk factors may indicate that measured risk factors for
outcome are imbalanced by instrument status
* But if balanced, unmeasured risk factors could still be unbalanced
* If co-interventions affect the outcome directly, the absence of such co-
interventions cannot be proven.
— Even minor violations of the instrumental variable conditions may result in
large biases of unpredictable direction.

* Second challenge relates to the fact that, even if several variables are controlled
as instrumental variables, other conditions will affect the correct interpretation: It
cannot be empirically verified.

* |f a valid instrumental variable is defined, implementation is straightforward
through 2 stages

— Predicting E as a function of Z and potentially measured C
— Predicting O as a function of predicted E and the same set of C
1/13/26 11
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Quantitative bias analysis X

* Anyway, bias (selection bias, confounding, misclassification) remains in almost all
epidemiologic studies.

— (eg.) Misclassification of exposure about medication (false positive and false
negative)

- (eg.2) Misclassification of disease outcome (overdiagnosis occurs more in
exposed)

— (eg.3) Misclassification in confounding (some confounders are imperfectly
measured or not recorded at all)

* Common approach for bias: Discussing the biases are small
* Alternative, more powerful approach is Quantitative bias analysis (Table 15.3)

— Simple sensitivity analysis: one fixed value assigned, one bias is analyzed,
single revised estimate of association is given, random error is not fully
incorporated

— Multidimensional sensitivity analysis: 2 or more values assigned, one bias is
analyzed, 2 or more revised estimates are given, random error is not fully
incorporated

— Probabilistic analysis: probability distribution assigned, one bias is analyzed,
frequency distribution of revised estimates is given, random error is fully
incorporated

— Multiple bias modeling: probability distributions assigned, multiple biases are
analyzed, frequency distributions of revised estimates are given, random
111306 efrror is fully incorporated 12




Simple and multidimensional sensitivity analyses vz

Using expected impact of the systematic error
using bias parameters

A simple sensitivity analysis assesses the impact
on the study findings of assuming one alternative
fixed value for the bias parameters.

- In Table 15.4, assuming that our measure of
exposure has a specificity of 80% and 100%
sensitivity, observed number of unexposed
total is 800*0.8=640; exposed total is
200+(800-640)=360; Among 150 unexposed
cases, 150%(1-0.8)=30 are misclassified as
exposed and thus exposed cases are
100+30=130 (actually among (800-640), 30
develop disease); unexposed cases become
150-30=120

- Observed RR =0.36/0.19 = 1.9, which is
much smaller than true RR 2.7, due to
nondifferential misclassification

- Inreal world, we don’t know truth. If we start
from observed data and assume 80%
specificity and 100% sensitivity, 640/0.8=800
as true total unexposed, 800%(120/640)=150
as exposed cases, 360-(800-640)=200 as
total exposed, 130-(150-120)=100 as
exposed cases (back-calculation)
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Table 15.4 Exposure misclassification
Truth Observed

Exposed Unexposed  Exposed Unexposed

Diseased 100 150 130 120
Total 200 800 360 640
Risk 0.5 0.19 0.36 0.19
Risk 0.5/0.19 = 2.7 0.36/0.19=1.9

Ratio

* As shown in Table 15.5, various sets of
sensitivity and specificity can be
assumed, and accordingly, various “truth”
can be calculated, which enable to
estimated various “true” RR.

* Assuming the range of specificity as 0.7-
0.9 and the ran&e of sensitivity as 0.85-
1.0, possible RRs range from 2.2 to 5.4.

* The range of those RRs is much wider
than the conventional confidence
intgrga?!s?)gin this case, 95% Cl of RR 2.7
is 2.2-3.

13



Probabilistic and multiple bias modeling vz

Multidimensional sensitivity analysis does not incorporate any outside |nformat|on or
prior view about which estimates are most plausible

Probabilistic analysis considers probability distributions (uniform, triangular,
trapezoidal, ...) for the bias parameters rather than the sets of plausible values.

Values for the bias parameters are repeatedly (1000 times or more) drawn from
prespecified distribution. The results are accumulated to generate the frequency
distribution of the results. Percentiles can be reported. Finally random errors are
incorporated.

In R, episensr package enable it.
https://cran.r-project.org/web/packages/episensr/vignettes/episensr.ntml
https://doi.org/10.1093/ije/dyad053 (Explanation for R and SAS)

Table 15.6 provides the example of probabilistic bias modeling

By simultaneously considering multiple sources of bias, multiple bias modeling
IS also possible.

Critics of bias modeling is the subjective (or educated guesses) choice of bias
parameter distributions, but it's important in causal inference based on weak
associations but needed in public policy or clinical practice.

E-value is suggested as quantitative measure of unmeasured bias
https://doi.org/10.1016/j.jclinepi.2023.09.014
https://doi.org/10.1093/ije/dyaa127
https://www.igaku-shoin.co.jp/application/files/8516/5208/5051/114.pdf
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Imai, K. (2021) Causal Directed Acyclic Graphs. Harvard Univ.
https://imai.fas.harvard.edu/teaching/files/DAG.pdf

— Freesoft: https://dagitty.net/ (Tutorial: https://dagitty.net/learn/index.html)
(For Japanese Students, the books below are very good resource)
- g@ﬁ%& (2024) MFHIEALIVTIEHETLVBRERCEZFN BHE
==
- MEE (2024) TIXU S TOHETHIRRHER] =K ES
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