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Dealing with missing data
● Almost all dataset has missing: Ranging from a few for several people to 

many missing for a large proportion of individuals
● How to handle missing data?  There are several methods, but any choice 

rests on assumptions about the pattern of missingness.
– Complete Case Method: Exclude all individuals with (even single) 

missing data
● It seems to ignore the missing data, but its justification relies on a 

hypothesis about why the data are missing: Missing occurs 
randomly, unrelated to any measured or unmeasured variables

● By R, if original dataset is X, subset(X, complete.cases(X)).
● Simple and easy, but not optimal because (1) if missing occurs not 

randomly, removal causes bias, (2) removal results in loss of data 
(Even if only 1% of individuals have missing for each variable, to 
use 50 variables, 39% (=1 – 0.9950) of datasets are removed).

– Missing Indicator Method: Instead of excluding individuals with 
missing data, adding a flag for each variable with missing data, 
typically as a new binary (0/1) variable (called as indicator variable), 
where 1 means missing. It relies on the same hypothesis (missing 
occurs randomly) with complete case method.

– Imputations → See, next slide
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Imputations
● A good tutorial paper: https://doi.org/10.1016/j.cjca.2020.11.010
● Single imputation: Filling in the missing values with one set of plausible values. 

Susceptible to bias if the missing values are not missing at random (non-existing 
data are added → less variability → narrow confidence intervals)
– To use the mean of the nonmissing value for that variable
– To identify important strata of individuals and use the mean of the nonmissing 

values for that stratum
– To sample an imputed value randomly from the set of observed values for 

those whose data are not missing “hot deck imputation”
– For longitudinal research, missing value can be imputed from that individual’s 

last recorded observation “last observation carried forward”
● Multiple imputation: To address the problems of bias and incorrect precision, 

imputing the missing value using a regression model as prediction tool.
– To predict the most plausible value to substitute for what is missing, based on 

all known data, which may include study outcome
– Complicated, but the process can be automatically applied using statistical 

software packages (such as mice and Amelia in R): The imputation is 
repeated 20 times or more (thus “multiple” imputation) and integrated 
(averaged across all the imputed datasets), to address the issue of false 
precision from adding data, with adding the error terms.

– It appears to be a robust method that outperforms other methods in many 
circumstances.

– To use Amelia, see https://gking.harvard.edu/amelia

https://doi.org/10.1016/j.cjca.2020.11.010
https://gking.harvard.edu/amelia
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Causal diagrams
● Most imputation techniques need the 

knowledge to clarify the relationships 
among variables each other → Causal 
diagrams are useful

● Figure 15.1 (source: Lipsky and 
Greenland, 2022)
https://www.researchgate.net/publicatio
n/358932233_Causal_Directed_Acyclic
_Graphs
– E is associated with O if there is an 

open (unblocked) path between 
them

– The association may be mediated 
via one or more other variables (M)

– E and O are directionally connected: 
E is cause of O

– If we control for M in the analysis, 
we block the path from E to O 
through M, direct effect (E → O) 
remains

– E and O are independent if there is 
no path connecting them or every 
path connecting them is blocked (= 
directionally separated)

● Nondirected paths are potential sources 
of bias.
– When the third variable is associated 

with E and is a risk factor of O, it’s 
confounding: E ← C → O (So called 
“backdoor” path, unblocked)

– When a variable is a consequence 
of both E and O, it’s a collider: 
E → S ← O, this path is blocked by 
the collider. If this variable is 
ignored, no bias, but if it’s adjusted 
(=opening backdoor) in analyss, it 
causes bias.

Exposure
(E)

Confounder
(C)

Collider
(S)

Mediator
(M)

Outcome
(O)

Figure 15.1 Directed acyclic graph (DAG) illustrating 
directed (or causal) and nondirected (or bias) paths.

https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs
https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs
https://www.researchgate.net/publication/358932233_Causal_Directed_Acyclic_Graphs
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Graphical Connection, Association, 
and Causation

● Collider bias explains the 
observations that smoking appeared 
to be protective against serious 
COVID-19: Suffering from smoking-
related illness and severe COVID-19 
both increase risk of hospitalization. 
Those 2 risk factors are truly 
unassociated.

● Assuming there are only 2 reasons 
for hospitalization and anyone with 
either risk gets hospitalized

● Table 15.1: A total of 5+45+95 people 
are hospitalized, no association

● Table 15.2: Wihout 855 with neither 
risk factor. Strong negative 
association exists → All negative for 
smoking have COVID-19, and vise 
versa.

● By conditioning on the collider of 
hospitalization, we may open a 
backdoor path between smoking and 
COVID-19, also called as Berksonian 
bias.

Table 15.1 Lack of association in general 
population

Smoking No 
Smoking

Total

COVID-19 
infection

5 45 50

No COVID-19 
infection

95 855 950

Total 100 900 1000

Table 15.2 Illustrating association among 
hospitalized patients

Smoking No 
Smoking

Total

COVID-19 
infection

5 45 50

No COVID-19 
infection

95 0 95

Total 100 45 145
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Time-dependent variables
● Exposures change over time → time-

varying exposures
– Components of diet or chronic 

medication use occur daily or vary 
seasonally

– Radiation exposure during a 
mammogram occur infrequently and 
sporadically

● A simplistic way is to ignore the time 
variation: Compare ever exposed vs never 
exposed → Such a dichotomous exposure 
definition cannot capture detailed history of 
exposure

● By taking the exposure history into account 
in the exposure definition (eg. cumulative 
measures of smoking such a pack-years), 
it’s improved

● Potential confounders: unpredictably 
changing blood pressure, BMI, cholesterol, 
physical activity, exposures to sunlight, … 
The exposure at some time affecting the 
subsequent exposure (Figure 15.2)

● C ↔ E: C is confounder (and thus should 
be controlled) and causal intermediate (and 
thus should not be controlled) → Dilemma

● Consider a study evaluating the effect of 
asthma rescue mediation (E) on 
pulmonary function (D).

● The effect of medication is confounded by 
recent severity of asthma symptoms (C).

● Negative feedback bias the effect of 
treatment to result in apparent no benefit 
of the medication

● To solve it, g-methods (g-formula, marginal 
structural models, structural nested 
models) can be applied: These allow for 
stepwise feedback between time-varying 
treatments and time-varying confounders.

Figure 15.2 Directed acyclic graph (DAG) illustrating 
time-varying confounding.

C0 C1

E0 E1 D
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g-methods
● In Japanese, please see

https://www.m.u-tokyo.ac.jp/sph/wp-content/uploads/2024/09/3ee194aec0a51beb45cd166123592ac1.pdf
● Naimi AI et al. (2017) An introduction to g methods. Int J Epidemiol 

46(2): 756-762. PMID: 28039382; PMCID: PMC6074945. (ref.14)
https://doi.org/10.1093/ije/dyw323

● g-methods estimate contrasts of potential outcomes under a less 
restrictive set of assumptions than standard regression methods.
– Inverse probability weighting generates a pseudo-population 

in which exposures are independent of confounders, enabling 
estimation of marginal structural model parameters.

– g-estimation exploits the conditional independence between the 
exposure and potential outcomes to estimate structural nested 
model parameters. In R, gesttools package can be used.
https://doi.org/10.1353/obs.2022.0003

– The g-formula models the joint density of the observed data to 
generate potential outcomes under different exposure scenarios. 
In R, gfoRmula (https://doi.org/10.1016/j.patter.2020.100008) 
package is available.

https://www.m.u-tokyo.ac.jp/sph/wp-content/uploads/2024/09/3ee194aec0a51beb45cd166123592ac1.pdf
https://doi.org/10.1093/ije/dyw323
https://doi.org/10.1353/obs.2022.0003
https://doi.org/10.1016/j.patter.2020.100008
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Instrumental variables
● Conditional exchangeability: The 

assumption of no unmeasured 
confounding of the exposure effect to 
consider that the experiences of the 
exposed and unexposed are 
exchangeable.
– E → O (no confounding)
– E ← C → O; E → O (blocking the 

backdoor path by controlling all 
confounders)

● This is untestable. The threat of 
unmeasured confounding remains 
one of the biggest challenges in 
epidemiologic research

● Using instrumental variable (Z) in 
Figure 15.4 can be applicable if some 
of the confounders remain 
unmeasured (U)
– Z is associated with E, does not 

share any causes with O, has 
relation to O only through E 
(exclusion restriction)

● It implies
– There is no path from Z to O 

that does not go through E

Figure 15.4 Directed acyclic graph (DAG) 
which includes an instrumental variable Z

Z U, C

E O
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Instrumental variable in the context of 
experiments

● The conditions of applicability of instrumental variable is related to random 
assignment to a treatment or intervention in a double-blind clinical trial.

● First, the treatment assignment is strongly associated with the actual exposure, 
because participants are much more likely to receive a given treatment if they are 
assigned to receive it.
– (eg.) The people in treatment group and control group may change their mind 

about participation.
● Second, because treatment is assigned randomly, all risk factors for the outcome 

will be balanced between treatment groups in expectation.
– Main goal of randomization.

● Third, because the trial is double-blind and therefore neither the patients nor the 
providers know the assignment, the only way in which treatment assignment can 
affect the outcome is through the causal action of actual treatment.

● From those 3 considerations, random assignment meets the conditions needed 
as instrumental variable.

● To preserve this benefit, the main effect measure of interest must be ITT 
(intention-to-treat), rather than actual treatment (=average treatment effect), [the 
effect of ITT]/[association between Z and O = measure of compliance]
– If the compliance is perfect, denominator = 1 → the average treatment effect 

equals to the intention-to-treat effect.
– If ITT effect is corrected for the amount of noncompliance to represent the 

effect if everyone is compliant
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Instrumental variables in the context of 
observational studies

● The prospect for using an instrumental variable hinges on whether we can 
identify a variable as random treatment assignment → Quasi-experimental study

● Genetic variants that influence phenotypes offer one such possibility: Mendelian 
randomization studies
– (eg.) Alcohol consumption associates with many behavioral and 

environmental factors. In cohort/case-control studies, those factors may 
confound associations between alcohol use and health outcomes. But flusher 
who has malfunctioning variant gene in ALDH feel unpleasant to drink alcohol 
and thus associates with less alcohol consumption. Having less active ALDH 
may be an instrumental variable to study the health effect of alcohol 
consumption, but there are many challenges.

● Can we find genes affecting the exposures of interest?
● Are the associations between genotype and phenotype too weak to be 

helpful?
● Can we be certain that the other assumptions for instrumental variables 

are met?
● Beyond Mendelian randomization, there are several other sources of random 

variation which can be exploited in instrumental variable analysis → “preference”
– Physicians may have a preference to prescribe one medication over another
– Some hospitals may prefer more aggressive treatment of certain conditions
– Such provider, facility, or even region-based preferences can be used as an 

instrumental variable.
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Challenges with instrumental variable 
analyses

● The biggest challenge is that we can never prove that a variable is a valid 
instrument
– The first condition (association between the instrument and the exposure) can 

be empirically verified to some extent. No clear cut-off
– The second and third conditions may be theoretically justified, but not 

empirically proven.
● The balance of risk factors may indicate that measured risk factors for 

outcome are imbalanced by instrument status
● But if balanced, unmeasured risk factors could still be unbalanced
● If co-interventions affect the outcome directly, the absence of such co-

interventions cannot be proven.
– Even minor violations of the instrumental variable conditions may result in 

large biases of unpredictable direction.
● Second challenge relates to the fact that, even if several variables are controlled 

as instrumental variables, other conditions will affect the correct interpretation: It 
cannot be empirically verified.

● If a valid instrumental variable is defined, implementation is straightforward 
through 2 stages
– Predicting E as a function of Z and potentially measured C
– Predicting O as a function of predicted E and the same set of C
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Quantitative bias analysis
● Anyway, bias (selection bias, confounding, misclassification) remains in almost all 

epidemiologic studies.
– (eg.) Misclassification of exposure about medication (false positive and false 

negative)
– (eg.2) Misclassification of disease outcome (overdiagnosis occurs more in 

exposed)
– (eg.3) Misclassification in confounding (some confounders are imperfectly 

measured or not recorded at all)
● Common approach for bias: Discussing the biases are small
● Alternative, more powerful approach is Quantitative bias analysis (Table 15.3)

– Simple sensitivity analysis: one fixed value assigned, one bias is analyzed, 
single revised estimate of association is given, random error is not fully 
incorporated

– Multidimensional sensitivity analysis: 2 or more values assigned, one bias is 
analyzed, 2 or more revised estimates are given, random error is not fully 
incorporated

– Probabilistic analysis: probability distribution assigned, one bias is analyzed, 
frequency distribution of revised estimates is given, random error is fully 
incorporated

– Multiple bias modeling: probability distributions assigned, multiple biases are 
analyzed, frequency distributions of revised estimates are given, random 
error is fully incorporated
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Simple and multidimensional sensitivity analyses
● Using expected impact of the systematic error 

using bias parameters
● A simple sensitivity analysis assesses the impact 

on the study findings of assuming one alternative 
fixed value for the bias parameters.
– In Table 15.4, assuming that our measure of 

exposure has a specificity of 80% and 100% 
sensitivity, observed number of unexposed 
total is 800*0.8=640; exposed total is 
200+(800-640)=360; Among 150 unexposed 
cases, 150*(1-0.8)=30 are misclassified as 
exposed and thus exposed cases are 
100+30=130 (actually among (800-640), 30 
develop disease); unexposed cases become 
150-30=120

– Observed RR = 0.36/0.19 = 1.9, which is 
much smaller than true RR 2.7, due to 
nondifferential misclassification

– In real world, we don’t know truth. If we start 
from observed data and assume 80% 
specificity and 100% sensitivity, 640/0.8=800 
as true total unexposed, 800*(120/640)=150 
as exposed cases, 360-(800-640)=200 as 
total exposed, 130-(150-120)=100 as 
exposed cases (back-calculation)

Table 15.4 Exposure misclassification

Truth Observed
Exposed Unexposed Exposed Unexposed

Diseased 100 150 130 120
Total 200 800 360 640
Risk 0.5 0.19 0.36 0.19
Risk 
Ratio

0.5/0.19 = 2.7 0.36/0.19 = 1.9

● As shown in Table 15.5, various sets of 
sensitivity and specificity can be 
assumed, and accordingly, various “truth” 
can be calculated, which enable to 
estimated various “true” RR.

● Assuming the range of specificity as 0.7-
0.9 and the range of sensitivity as 0.85-
1.0, possible RRs range from 2.2 to 5.4.

● The range of those RRs is much wider 
than the conventional confidence 
intervals (in this case, 95% CI of RR 2.7 
is 2.2-3.3)
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Probabilistic and multiple bias modeling
● Multidimensional sensitivity analysis does not incorporate any outside information or 

prior view about which estimates are most plausible
● Probabilistic analysis considers probability distributions (uniform, triangular, 

trapezoidal, …) for the bias parameters rather than the sets of plausible values.
● Values for the bias parameters are repeatedly (1000 times or more) drawn from 

prespecified distribution. The results are accumulated to generate the frequency 
distribution of the results. Percentiles can be reported. Finally random errors are 
incorporated.

● In R, episensr package enable it.
https://cran.r-project.org/web/packages/episensr/vignettes/episensr.html
https://doi.org/10.1093/ije/dyad053 (Explanation for R and SAS)

● Table 15.6 provides the example of probabilistic bias modeling
● By simultaneously considering multiple sources of bias, multiple bias modeling 

is also possible.
● Critics of bias modeling is the subjective (or educated guesses) choice of bias 

parameter distributions, but it’s important in causal inference based on weak 
associations but needed in public policy or clinical practice.

● E-value is suggested as quantitative measure of unmeasured bias
https://doi.org/10.1016/j.jclinepi.2023.09.014
https://doi.org/10.1093/ije/dyaa127
https://www.igaku-shoin.co.jp/application/files/8516/5208/5051/114.pdf 
(Japanese)

https://cran.r-project.org/web/packages/episensr/vignettes/episensr.html
https://doi.org/10.1093/ije/dyad053
https://doi.org/10.1016/j.jclinepi.2023.09.014
https://doi.org/10.1093/ije/dyaa127
https://www.igaku-shoin.co.jp/application/files/8516/5208/5051/114.pdf
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FURTHER READING
● Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch 

Psychol. 2010 Feb;48(1): 5-37. PMID: 20006986.
https://doi.org/10.1016/j.jsp.2009.10.001

● Hayati Rezvan P, Lee KJ, Simpson JA. The rise of multiple imputation: a review 
of the reporting and implementation of the method in medical research. BMC 
Med Res Methodol. 2015 Apr 7;15:30. PMID: 25880850; PMCID: PMC4396150.
https://doi.org/10.1186/s12874-015-0022-1

● Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, 
Carpenter JR. Multiple imputation for missing data in epidemiological and 
clinical research: potential and pitfalls. BMJ. 2009 Jun 29;338:b2393. PMID: 
19564179; PMCID: PMC2714692.
https://doi.org/10.1136/bmj.b2393

● Imai, K. (2021) Causal Directed Acyclic Graphs. Harvard Univ.
https://imai.fas.harvard.edu/teaching/files/DAG.pdf
– Freesoft: https://dagitty.net/ (Tutorial: https://dagitty.net/learn/index.html)

● (For Japanese Students, the books below are very good resource)
– 佐藤俊哉 (2024)『宇宙怪人しまりす　統計よりも大事なことを学ぶ』朝倉
書店

– 林岳彦 (2024)『はじめての統計的因果推論』岩波書店

https://doi.org/10.1016/j.jsp.2009.10.001
https://doi.org/10.1186/s12874-015-0022-1
https://doi.org/10.1136/bmj.b2393
https://imai.fas.harvard.edu/teaching/files/DAG.pdf
https://dagitty.net/learn/index.html
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