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The purpose of this practice is to master the following series of data analysis: (1) to make computerized data file from raw
data collected by experiments or field survey, (2) to analyze the data using the free software R, (3) to read the results and (4) to
summarize them as a report.
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1 The very basics of R

R can work on many computer operating systems like Microsoft Windows, Mac OS X, or Linux. To install R on Windows and
Mac OS X, we can download the appropriate binary setup file and execute it with selecting some options. To install R on Linux,
we can usually download source tar ball and make and install.

R is a free software, so that you can freely install and use it in your own computer. The internet sites where we can download
R-related files (including binary setup files and source tar balls, with many additional packages) are called as “CRAN” (The
Comprehensive R Archive Network). There are 2 mirror sites of CRAN in Japan and residents in Japan are recommended to use
them (Univ. Tsukuba *1 and Hyogo University of Teacher Education*2).

1.1 Installation of R programs, as of 31 July 2012

Windows Download R-2.15.1-win.exe from CRAN mirror and execute it. English is recommended as language used
in the process of installation. In the window “Setup - R for Windows 2.15.1”, click [Next], then you see the li-
cense confirmation. Click [Next] again, you must specify the directory for R programs. In general, the default,
C:\Program Files\R\R-2.15.1, is recommended. Clicking [Next], you must select the components to be installed.
Again, in general, the default “User installation” is enough. Then clicking [Next], the window to ask “Do you want to
customize the startup options?” appears. Here, you should select Yes (customized startup), because accepting defaults
force you to use MDI environments which will make conflicts with Rcmdr. In the next window, SDI (separate windows)
should be checked. Clicking [Next], you must select the type of help system. Either OK, but the author prefer “Plain text”.
In the next window, you must specify the internet connection type. If you have already set up Internet Explorer to access
any internet sites, “Internet2” is recommended. After that, explanation may not be needed.

Macintosh R-2.15.1 can work on Mac OS X 10.5 (Leopard) or later versions. Downloading R-2.15.1.pkg from R mirror sites
and double-click it.

Linux You can download pre-compiled binaries for major distribution packages like Debian, Redhat or ubuntu from CRAN. Oth-
erwise please download R-2.15.1.tar.gz from CRAN mirror sites and execute tar xvzf R-2.15.1.tar.gz. Chang-
ing directory to R-2.15.1 and doing ./configure and make, you can get executable binary. After that, you must become
superuser before doing make install.

1.2 Installation of EZR, as of 31 July 2012

Full installation guide can be obtained from the authors’ web site*3

Briefly speaking, it is very easy to install EZR for Windows. All you need to do is downloading the file EZRsetupENG.exe and
double-click it and follow the instruction.

1.3 Basic usage of R

The following description is based on Windows environment. There may be some environment-specific points.
You will find “R” icon on your desktop after the completion of installation. If you cannot find it on your Desktop, you can find

it in the start menu. To start R gui (graphical user’s interface), just double-click this icon, then R gui environment will start. If you
previously set the working directory of this icon’s property to your working directory, R uses there as the current directory. And,
if you set “Link to” box as ["C:\Program Files\R\R-2.15.1\bin\i386\Rgui.exe" LANG=C LC_ALL=C], you can use R
in English mode even in Japanese Windows. The Rgui executes .Rprofile of the working directory and reads .RData, and
shows the following prompt.� �
>� �
Entering commands (functions) to R should be done via this prompt. When you press the

� �
Enter� �key on the middle of line, the

prompt will change to +. In the Windows environment, you can cancel the command to back to the first prompt > by pressing
� �
Esc� �

*1 http://cran.md.tsukuba.ac.jp/
*2 http://essrc.hyogo-u.ac.jp/cran/
*3 http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html
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key.
You can save the history which you entered as functions, statements, comments (R will treat any statements as com-

ments after # until the end of line) into a file (default name is .Rhistory. You can redo any saved functions by entering
source("saved filename"). The directory delimiter sign should be / instead of \*4.

You can recall any lines which you have entered in that session by pressing
� �
↑� �key.

If you add C:\Program Files\R\R-2.15.1\bin to Path, you can start R by simply typing R in the command prompt of
Windows 2000/XP.

1.4 Basic functions to be entered to the Rgui prompt

Quit q()

Assign <-

For example, to assign the numeric vector with 3 elements of 1, 4, 6 to the variable X, type as follows.� �
X <- c(1,4,6)� �

Define function function()

For example, the combined function of mean() and sd(), meansd() can be defined as follows.� �
meansd <- function(X) { list(mean(X),sd(X)) }� �

Install packages install.packages()

For example, downloading the Rcmdr package with depending-on packages from CRAN can be done as follows*5,� �
install.packages("Rcmdr",dep=TRUE)� �

Help ?

For example, to see the help of t.test (which statistically tests the null-hypothesis that there is no significant difference
between the means of two independent groups), type ?t.test to the prompt.

The function definition has great possibility. It can be done using many lines, and the return value of the function is the last line
of the definition, and the return value can be any object: not only scalar, but also vector, matrix, list, or data.frame.

Each function has its own scope. Assignment within a function has no effect outside, unless using eternal assignment by <<-.

1.5 Using R Commander or EZR

This practical course has so limited time to learn R that such a command-based usage is unsuitable. Therefore, we use
the Rcmdr package, which enhance the menu-based graphical users’ interface. To start Rcmdr, type library(Rcmdr) to the
Rgui’s prompt. After you once terminate Rcmdr, you need to type detach(package:Rcmdr) before restart the Rcmdr by typing
library(Rcmdr) again. However, it is also possible to call Rcmdr by typing Commander() without detaching the package.

EZR includes R itself and Rcmdr for menu operation and many new functions for medical statistics. After the installation,
double-clicking the R icon will automatically start R itself with EZR. If you would like to operate EZR in English menu, it become
possible by setting command-line statement of property of the desktop-icon, similar to R gui case.

2 Design of the study

2.1 Overview

There are 2 kinds of study as below.

1. Problem finding
• Pilot study
• Case report

*4 This character is ¥ in Japanese keyboard.
*5 However, to install additional packages to R in Windows environments, the Administrator’s right is necessary.
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• Descriptive research: eg. Estimating incidence rates
• Problem formulation: esp. Qualitative research

2. Problem solving: Usually sample study and the appropriate design including sample size (using power analysis) is essential.
• Hypothesis testing
• Sampling→ Data→ Testing null-hypothesis→ Find significant difference / correlation / fit of the model, etc.
• Intervention study

There are 4 different approaches to data, as shown below.

1. Interview / Questionnaire: Usually in problem finding study: Structured / semi-structured / non-structured
2. Observation, including measurements
3. Experiment, including RCT: Usually in problem solving study
4. Meta-analysis with systematic review

At least, in problem solving study, determination of sample size is a critical issue. Sample size consideration can be summarized
as below.

• Whole population study (not sample)
– Usually in problem finding study
– The number of subjects only contributes to reducing error
– Popular statistical methods are not directly applicable

• Sample study
– Appropriate sampling is essentially required in hypothesis testing, animal experiments, and intervention study.
– In some clinical settings, ideal sample size cannot be satisfied. In such cases, sample size is determined as all patients

with informed consent within a study period. It’s just a compromise.
– In principle, calculating sample size as study design is needed (usually required in ethics committee). Usually the

software like PS or EZR is used.
– In animal experiments or intervention study, sample size calculation is especially important

2.2 Determination of sample size

A hypothetical case� �
Due to the availability of patients within graduate school terms, only 10 patients were investigated to test the specific null-
hypothesis X that factor Y is not related with factor Z, and the null-hypothesis could not be rejected at a significance level of
5%.
Based on the consideration that the result of “not significant” is also to be published to avoid publication bias, a manuscript
entitled as “Lack of relationship in the patients ...” was written and submitted to a journal.
The referee judged as “No significance may be caused by the less sample size.” (In other words, the statistical power was not
enough.) This is the fatal fault of the study design. Usually the manuscript is rejected. The student asked to a statistician of
helpful advices, but the statistician can do nothing to help the one.
It’s a kind of common tragedy for many students.
The study framework was the hypothesis testing.
Statistical power may increase with the sample size, so that it could be possible to determine the sample size to achieve enough
statistical power before the study.
After the study, the student can do nothing but writing excuse: e.g. due to less availability of the patients, short of funding,
tradition in that specific study field. Sometimes it will pass the peer review because the result can contribute to future meta-
analysis.� �

What are the description in textbooks of medical statistics?

• A study that is too small may be unethical, since it is not powerful enough to demonstrate a worthwhile correlation or
difference.
• Similarly, a study that is too large may also be unethical since one may be giving people a treatment that could already have

been proven to be inferior.
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• Many journals now have checklists that include a question on whether the process of determining sample size is included in
the method section (and to be reassured that it was carried out before the study and not in retrospect).
• The statistical guidelines for the British Medical Journal in Altman et al. (2000) state that: ‘Authors should include infor-

mation on… the number of subjects studied and why that number of subjects was used.’

Sometimes the sample size calculations are not needed

• A cynic once said that sample size calculations are a guess masquerading as mathematics. To perform such a calculation
we often need information on factors such as the standard deviation of the outcome which may not be available. Moreover
the calculations are quite sensitive to some of these assumptions.
• Any study, whatever the size, contributes information, and therefore could be worthwhile and several small studies, pooled

together in a meta-analysis are more generalizable than one big study.
• Often, the size of studies is determined by practicalities, such as the number of available patients, resources, time and the

level of finance available.
• Studies, including clinical trials, often have several outcomes, such as benefit and adverse events, each of which will require

a different sample size.
• Usually, sample size calculation is not necessary in qualitative studies or case reports, including pilot study
• In descriptive study, usually previous information about the measures is unavailable, so that the sample size calculation is

impossible: As rules of thumb, “at least 12 individuals in each group” is suggested. List the main cross tabulations that will
be needed to ensure that total numbers will give adequate numbers in the individual tables cells.
• Exploring the hidden hypothesis or describing estimates with 95% confidence intervals may not always require the sample

size calculation, but power analysis (to evaluate sampling adequacy) after the study is possible.

Principles of sample size determination in hypothesis testing

1. What kind of information is needed?
• Method of statistical test (including null-hypothesis)
• Type I error (α error: probability to reject the true null-hypothesis, in other words, false positive)
• Type II error (β error: probability to fail to reject the false null-hypothesis / false negative) = 1-statistical power
• Expected values from previous studies (eg. SD, p1, p2)
• Minimum differences of clinical importance (usually denotes d)

2. Equations are quite different by statistical tests (and by textbooks, because those are of approximation). Examples are
shown below, where n is needed sample size for each group, zα means the quantile point of (1 − α) of the standard normal
distribution.
• Compare means by t-test:

n = 2 × (zα − z1−β)2 × SD2/d2 + z2
α/4

• Compare proportions by χ2 test:

n = (zα/2 + z1−β)2 × {p1(1 − p1) + p2(1 − p2)}/(p1 − p2)2

3. Usually special softwares (nQuery, PASS, PS) or general statistics softwares (SAS, SPSS, STATA, EZR, R, etc.) will be
applied. The author recommends to use EZR or PS. PS will automatically generate the example of sentenses to describe
how to determine the sample size. By EZR, from [Statistical analysis] menu, select appropriate one from [calculate sample
size].

3 Experimental study design

Any experimental study must be carefully designed. The experimental study design was originated for agricultural study at
Rothamstead by R.A. Fisher. In medical and health studies, such kind of design is needed for dose-response relationship analysis
of toxicicity testing and clinical trial. Of course, the study must pass the ethics committee, which requires the appropriate study
design with proper sample size.

Fisher established the following 3 principles in experimental study design.

1. Replication: at least 2 or more repeated measurements are needed for each treatment

6



2. Randomization: The order and area allocation of the experiment must be randomly assigned.
3. Local control (blocking): If the experiment is done in a large-scale, the randomization of whole samples is invalid. Instead,

making local blocks in several ways, and randomization within the blocks can partly remove bias as inter-block variation.

3.1 Famous experimental designs with corresponding typical statistical tests

One group pretest-posttest design: The design enables a researcher to compute a contrast between means in which the pretest
and posttest means are measured with the same precision. The statisical test is usually paired t-test. Null hypothesis: the
mean of difference is zero. Examples are:
• Compare serum cortisol levels before and after the surgery in rheumatoid arthritis patients
• Compare the depression score before and after the sound-therapy in depression patients
• Compare the simple calculation test score before and after drinking coffee.

An example of paired t-test� �
• We can use survey dataframe of MASS package in R (EZR) to learn how to conduct paired t-test, whereas it

is the result of cross-sectional study.
• In EZR, select [File] and [Read data included in package], then select [MASS] and [survey].
• The survey contains the responses of 237 students at the University of Adelaide to a number of questions

(Venables and Ripley, 1999). Variables include the span (distance from tip of thumb to tip of little finger of
spread hand) of writing hand as [Wr.Hnd] and that of non-writing hand as [NW.Hnd].

• Select [Statistical Analysis], [continuous variables], then [paired t-test]. Select [NW.Hnd] at left panel and
[Wr.Hnd] at right panel and click [OK]. That’s all.� �

Pararell group design (=Completely randomized design): Very simple. The subjects who signed informed consent are com-
pletely randomly (not haphazardly) assigned to one of the several treatment (exposure). There are several randomization
methods. Fleiss JL (1986) “The design and analysis of clinical experiments” recommends to use “random permutation
tables” instead of “random number tables”. However, now we can use computer software. If we want to assign 45 subjects
into 3 treatments, type matrix(sample(1:45, 45, replace=FALSE),3) in R. Usuallly t-test/ANOVA for quantitive
data, χ2 test for proportion.

Randomized block(s) design: Due to incompleted study, completely randomized design may lead to unbalanced sample sizes
among groups. If the sample size for each treatment is 15 and the kind of treatment is 3, randomized block design randomly
select one of 6 possible blocks ({A, B, C}, {A, C, B}, {B, C, A}, {B, A, C}, {C, A, B}, {C, B, A}) 15 times. By doing so,
if the study may suspend in the middle, the sample size difference is at most 1 among groups. Description and analysis can
be similar to complete randomization, but the analysis considering blocks’ effect is also possible. (cf.) Another method to
keep size balance is “Minimization design”. It minimize the sample size difference at each time of sampling.

Factorial design An example of 2x2 factorial design follows. McMaster et al. (1985): a randomized trial to evaluate breast
self-examination teaching materials as leaflets or tape/slides. The treatment groups were designed as four pararell groups
as:
1. No leaflets nor tape/slides given (control)
2. Leaflets displayed
3. Tape/slides program
4. Both given
The effect of teaching can be evaluated using ANOVA: two kinds of materials can be evaluated.

Latin-square design: When the experiment have one treatment (A) with p ≥ 2 levels, 2 nuisance variables (B, C) each with p

levels, this design is useful. The name is originated from ancient puzzle. Assume p is 3. Latin square is shown below.

c1 c2 c3
b1 a1 a2 a3
b2 a2 a3 a1
b3 a3 a1 a2

Group 1 gets the combination of treatment a1b1c1 for n1 individuals. Following n2 individuals get treatment a1b2c3 as
group 2. By doing so, the effects of B and C on the outcome measure can be controlled in ANOVA.

Crossover design: Subjects will be serially treated by 2 kinds of intervention with proper interval (wash-out period to avoid
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carry-over) in different order. (Example) Hilman BC et al. “Intracutaneous Immune Serum Globulin Therapy in Allergic
Children.”, JAMA. 1969; 207(5): 902-906: Matched (paired) analysis of variance (within-subject difference will be zero or
not, adjusted by the order of treatment)

4 Data entry, descriptive statistics, and drawing graph

4.1 Data entry

For the statistical analysis of the data obtained through research, at first you must enter the data into the computer. The suitable
(accurate and efficient) way to enter the data depends on the size of the data and the software to statistically analyze data.

If your data is very very limited and analysis is very very simple, you can use even calculator, not computer. At least, you don’t
have to make data file, just type the data values within a procedure of analysis. For example, mean body weight of 3 individuals of
60, 66, 75 kilograms can be calculated by typing mean(c(60,66,75)) or (60+66+75)/3 to R’s prompt.

However, most researchs require much bigger sized data analysis with various method. In such cases, we should prepare the data
file, separated from analyzing program. Somebody uses the Microsoft Excel for both data entry and analysis, both can be entered
into cells in similar manner, but I don’t recommend it from the view of protection and secure management and future re-analysis
possibility.

Spreadsheet programs like Microsoft Excel or OpenOffice.org Calc should be exclusively used for data entry. For example, the
following table is the data of weight and height for 10 subjects.

Subject ID Height (cm) Weight (kg)
1 170 70
2 172 80
3 166 72
4 170 75
5 174 55
6 199 92
7 168 80
8 183 78
9 177 87
10 185 100

In a spreadsheet software, this table should be entered into a single sheet. The top raw should be variable names. Multi-byte char-
acters can be used as variable name, but ASCII characters (especially alphabets and period, case-sensitive) can be recommended.
Actually some special characters are not allowed as R object name; for example, _ (underscore), #, and so on. If these special
characters are included in the top raw of the file, R will automatically change them, but it may make trouble. After completing
data entry, the file should be once saved as the software’s standard format (*.xls in Excel, *.ods in Calc). The screenshot shown in
the right is an example.

Next, we must save this as tab-delimited text file. From “File (F)” menu, select “Save as” and specify file format as text file
(delimited by tab): For example, name it as desample.txt. Though some warning dialog boxes will appear, you can ignore them
and click [Yes] button. The text file should not be placed on Desktop in Japanese environment, because Rcmdr in English version
sometimes fails to read file on the directory with the name including Japanese characters (but “My Documents” is OK).

Next, we will read desample.txt into R. In Rgui console, we can simply type as follows, then the data in the tab-delimited
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text file will be imported into the R’s data.frame object Dataset. The data.frame object includes many named variables of same
length. You can use any possible object name as the name of data.frame.

Dataset <- read.delim("desample.txt")� �
In EZR, select [File] in menu bar, [Import data], and [from text file, clipboard, or URL ...]. Then enter an arbitrary
name (default, “Dataset”) into the text box of [Enter name for data set:], check [Tabs] radio button as [Field Separator]
and click [OK] button. After that, you will see the window to select data file. You can confirm the successful reading
by clicking [View data set] button.
The spreadsheet’s data can also be read by EZR (Windows version) via clipboard, without making any file. Just after
the completion of data entry, you select the all data ranges and copy them to the clipboard. Activating EZR window
and after selecting [File], [Import data], [from text file, clipboard, or URL, ...] and entering appropriate name into
[Enter name for data set:] and check [Tabs] radio button as [Field Separator], check [Clipboard] radio button, and
click [OK] button, then the data will be set as active [Data set] in EZR.
EZR also supports the function to directly read *.xls files using RODBC library. Select [File], [Import data], [from
Excel, Access, dBase data set], and enter an arbitrary dataset name into [Enter dataset name:] textbox, select an Excel
book file to specify the sheet including the data.� �

4.2 Principle of data entry to avoid errors due to typos

The data entry should be duplicatedly done by more than two researchers. After completion of two files, those difference can be
checked by some programs (for example, copying those two files’ contents to separate worksheets of an Excel book, and entering
the formula of

=If(Sheet1!A1=Sheet2!A1,"","X")

into corresponding cells of the third worksheet of the same book. If all cells of two files are same, the third sheet will show
blank only. The cells in the third worksheet showing X must be checked with reference to raw data and fix them until achieving a
looked-like blank third worksheet.

However, it is sometimes difficult to keep two researchers, double-entries by a researcher or comparing the printed-out data with
screen are used instead.

4.3 How to treat missing values

It is necessary to pay attention to how to treat missing values. In general, the data to be statistically analyzed are sampled
from the source population. The representativeness of the sample is necessary to draw a valid inference on the source population
from the result of statistical analyses about the sample data. In both questionnaire (No Answer, Unknown, etc.) and experimental
research (Below the detection limit, insufficient quantity of samples to measure, accidental loss of samples, etc.), how to treat
missing values is critical point to add bias to sample representativeness.

For example, in a diet-related questionnaire, people who gave no answer to the question “Do you like sweets?” may like sweets
but didn’t reply [Yes] because they had known too much sweets-intake being judged as harmful factor for health. If so, omitting
them from the analysis cause to make bias: the sample may include less people who like sweets, compared with general population.
The researcher must pay effort to reduce such missing values, and must pay attention to them in explaining the result of analyses.

The code for missing values is NA in R. It is blank in Excel, and blank field in the tab-delimited text file is read as NA in R.
How to treat the data including missing values has no golden rule. The most clear method is to exclude any case with missing

values. If you do so, the easiest way to exclude the case with missing value is deleting such lines in Excel worksheet. However,
if you have many cases with few missing values, you can leave missing values in the dataset, and exclude missing values in each
analysis. Anyway, you should make effort to reduce missing values as possible as you can.

Considering more rigidly, although it is impossible to correct the bias caused by non-random missings as described above, we
must consider two situations of random missings. For the cases of “MISSING COMPLETELY AT RANDOM (MCAR)”, simply
excluding the missing cases causes no bias but decreases statistical powers. However, for the cases of “MISSING AT RANDOM
(MAR)” — there is no difference in the distributions of the variable between the observed cases and missing cases and there are
significant differences in the distributions of the other variables —, simply exluding missing cases may cause bias. To avoid such
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biases, many methods of “multiple imputation” to compensate missing values were developed. In R, the two packages (mitools*6

and mice*7) are famous. The maintainer of the latter package mice is Dr. Stef van Buuren, the specialist of multiplie imputation,
who manages the web-site “Multiple Imputation Online”*8. Because it is complicated, I cannot give a detailed explanation here*9.

4.4 Descriptive Statistics

The purposes to calculate descriptive statistis are, (1) glancing a feature of the data, and (2) checking the possibility of data entry
error. Impossible maximum/minimum values or too large standard deviation suggest such data entry errors.

Descriptive statistics include the “central tendency” which shows the location of the data and the “variability” which shows the
scale of the data.

The following 3 indices are popular central tendencies. Usually the mean is used, but the median is also used for the values with
outliers or trimmed distribution.

mean Most frequently used location parameter of the distribution. The mean of the population µ (pronounced as “mu”) is,

µ =

 N∑
i=1

Xi


N

Xi is each value in the distribution and N is total number of samples, where
∑

(pronounced as “sigma”) means the sign of
summation, i.e.,

N∑
i=1

Xi = X1 + X2 + X3 + ... + XN

The equation for sample mean is the same as the equation for population mean shown above. But the signs used in the
equation are slightly different. The sample mean X̄ (pronounced as “X bar”) is defined as

X̄ =

(∑n
i=1 Xi

)
n

where n is the sample size. Weighted mean is the summation of certain weights times values devided by the summation of
weights. In equation, let the weights wi,

X̄ =
w1X̄1 + w2X̄2 + ... + wnX̄n

w1 + w2 + ... + wn

In Rgui console, mean(X) gives the mean of a numeric vector X.
median The median divides the whole data into larger half and smaller half. Calculation of median does not require equation

but algorithm. From this nature, median hardly suffers from the effect of outliers. In Rgui console, median(X) gives the
median of a numerical vector X.

mode The most frequently appearing value is the mode. In Rgui console, table(X)[which.max(table(X))] may give the
mode (however, if there are some candidates with the same frequency, only the first one of them is given).

There are many other central tendencies like harmonic mean(= 1/(
∑n

i=1
1
Xi

)), geometric mean (= (
∏n

i=1 Xi)1/n). Both harmonic
mean and geometric mean are less sensitive to outliers than mean, but these cannot be used data including zero.

The following 4 are the popular indices of variability.

Inter-Quartile Range; IQR The quantiles are points taken at regular intervals from the cumulative distribution function (CDF) of
a random variable. Dividing ordered data into q essentially equal-sized data subsets is the motivation for q-quantiles; the
quantiles are the data values marking the boundaries between consecutive subsets (See, Wikipedia). If q = 4, the quantile
is called as quartile (If q = 100, the quantile is called as percentile). Quartiles is composed of 3 values: the first quartile

*6 http://cran.r-project.org/web/packages/mitools/index.html
*7 http://cran.r-project.org/web/packages/mice/index.html
*8 http://www.multiple-imputation.com/
*9 For example, let the data frame with missing value withmiss. After loading the mice package by typing library(mice), imp <- mice(withmiss)

makes the object imp, which includes the original data with the coefficients to estimate missing values based on multiple imputation. The methods of multiple
imputation can be selected from "sample", "pmm", "logreg", "norm", "lda", "mean", "polr", and so on as the option meth=within the mice() function.
To obtain the new data frame with compensated estimates for originally missing values, for example, type as est <- complete(imp, 2). Here 2 means
that the second coefficients set was used to estimate missing values among 5 (by default) coefficients sets. After that, multiple results based on multiple data
frames with compensations must be compiled (integrated).
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[Q1], the second quartile [Q2], and the third quartile [Q3]. The Q2 is same as the median. The five values of 3 quartiles
with minimum and maximum are called as five numbers, which is calculated by fivenum() function in R. The IQR is the
interval between Q1 and Q3, which means central half of the distribution. In Rgui console, IQR(X) gives the IQR of a
numeric vector X.

Semi Inter-Quartile Range; SIQR SIQR is IQR/2. If the data obeys normal distribution, central half of the data is included from
the median minus SIQR to the median plus SIQR. SIQR hardly suffers from outliers.

variance Deviation is the difference between each value and the mean. To equally treat minus deviation and plus deviation,
we can think the mean of squared deviation, that is the variance. The variance V is defined as V =

∑
(X−µ)2

N , actually

V =
∑

X2

N − µ2. As sample variance, instead of dividing squared deviance by the sample size n, dividing by n − 1, that is
called as the unbiased variance. The unbiased variance is a better estimate of the population variance than original variance.
The unbiased variance Vub is defined as Vub =

∑
(X−X̄)2

n−1 . In Rgui console, var(X) gives the unbiased variance of a numeric
vector X.

standard deviation; sd The standard deviation is square-root of variance, to match the dimention with the mean. The unbiased
standard deviation is square-root of unbiased variance*10. If the distribution of the data is normal distribution, the interval
between the mean minus 2 sd and the mean plus 2 sd*11 includes approximately 95% of the data. In Rgui console, sd(X)
gives the unbiased standard deviation of a numeric vector X.� �

In EZR, select [Statistical analysis], [Continuous variables], [Numerical Summaries], then you can get mean, standard
deviation, minimum, first quartile, median, third quartile, maximum, and the number of samples. Please try this using
the previously entered data set about 10 subjects’ height and weight.� �

4.5 Drawing Figures

To capture the whole nature of the data, I recommend to draw graphs. Human ability of visual perception is superior to computer,
at least about pattern recognition. Drawing graphs is also effective to find data entry errors.

How to draw suitable graphs depends on the scale of variables. For discrete variables, popular graphs are: Frequency bar plot,
stacked bar plot, horizontal bar plot, pie chart, and so on.� �

Let’s try the example. Drawing graphs for discrete variables by Rcmdr, the variables should have “factor” attributes. So
we should change the active dataset to “survey” included in “MASS” package. At first, select [Tools], [Load package(s)...],
then select “MASS” and click [OK]. Next, select [Data], [Data in packages], [Read data set from an attached package], then
double-click [MASS] in the left box, double-click [survey] in the right box, and click [OK], sequentially.
In EZR, it’s much easier. “MASS” package is already atttached, so that all you have to do is to select [File], [Read data
set from attached packages], and to double-click [MASS] in left-panel and to double-click [survey], then click [OK],
sequentially.� �
The data frame “survey” in MASS library contains the responses of 237 students at the University of Adelaide to a number of

questions (Venables and Ripley, 1999). The variables are:

Sex The sex of the student. (Factor with 2 levels “Male” and “Female”.)
Wr.Hnd The span (distance from tip of thumb to tip of little finger of spread hand) of writing hand, in centimetres.
NW.Hnd The span of non-writing hand.
W.Hnd Writing hand of student. (Factor, with 2 levels “Left” and “Right”.)
Fold The answer to “Fold your arms! Which is on top?” (Factor, with 3 levels “R on L”, “L on R”, “Neither”.)
Pulse Pulse rate of student (beats per minute).
Clap The answer to “Clap your hands! Which hand is on top?” (Factor, with 3 levels “Right”, “Left”, “Neither”.)
Exer How often the student exercises. (Factor, with 3 levels “Freq” (frequently), “Some”, “None”.)
Smoke How much the student smokes. (Factor, with 4 levels “Heavy”, “Regul” (regularly), “Occas” (occasionally), “Never”.)

*10 To note, the unbiased variance is the unbiased estimate of the population variance, but the unbiased standard deviation is not the unbiased estimate of the
population standard deviation. Here “unbiased” just means the source of calculation being the unbiased variance.

*11 Usually it is written as mean ± 2sd. The value 2 is approximation of 97.5 percent point of the standard normal distribution, 1.95996398454...: You can see
it by typing options(digits=20) and qnorm(0.975) in Rgui console.
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Height Height of the student in centimetres.
M.I Whether the student expressed height in imperial (feet/inches) or metric (centimetres/metres) units. (Factor, with 2 levels

“Metric”, “Imperial”.)
Age Age of the student in years.

Using this data set, let’s draw several graphs.

Frequency bar plot To draw the frequency of each category as vertical bars, by categories. For example, drawing the frequency
bar plot for the variable Smoke in survey, in Rgui console, barplot(table(survey$Smoke)).� �

In EZR, select [Graphs], [Bar graph (Frequencies)], then select [Smoke] as “Variable” and click [OK]. Align-
ment of bars usually obeys the alphabetical order of the category names (It can be changed using [Active data
set], [Variables], [Reorder factor levels]). In EZR, you can make frequency bar plot for subgroups by setting
“Grouping variable”.� �

Stacked bar plot The graph with stacked bars. It can be drawn by typing in Rgui console as follows.

barplot(as.matrix(table(survey$Smoke)))

This graph is not supported in Rmcdr nor EZR.
Horizontal bar plot Horizontally stacked bars with percentages. It can be drawn by typing in Rgui console as follows.

barplot(as.matrix(table(survey$Smoke)/NROW(survey$Smoke)*100),horiz=TRUE)

It is also not supported in Rcmdr nor EZR.
Pie chart Sectored circle due to proportions of categories. In Rgui console, pie(table(survey$Smoke)). This graph is well

known but not recommended by R Development Core Team, because the human eyes are good at judging linear measures
and bad at judging relative areas. They recommend a bar plot or dot chart for displaying this type of data.� �

In Rcmdr, select [Graphs], [Pie chart (Frequencies)], then select [Smoke] and click [OK].� �
For continuous variables, the popular graphs are the followings.

Histogram To see the distribution of a single numeric variable, plot the counts in the porperly spaced cells defined by “breaks”.
By default, breaks are calculated using “Sturges” algorithm, but it can be given explicitly. And by default, the cells are
intervals of the form “(a, b]”. If you need “[a, b)”, right=FALSE option must be specified (this option is not supported in
Rcmdr). To draw a histogram of Age in survey data set (the range of Age is from 16.75 to 73), type hist(survey$Age). If
you want to define the cells as [10,20), [20, 30), ..., [70, 80), type hist(survey$Age, breaks=1:8*10, right=FALSE).� �

In EZR, select [Graphs], [Histogram], then select [Age] as “Variable” and click [OK]. Some options can be
selected. Especially making histograms for several subgroups is possible by setting “Grouping variable”.� �

Normal QQ plot To see whether the distribution of a single numeric variable is normal distribution or not, the data points are
plotted to corresponding quantiles of a normal distribution: If the data obey a normal distribution, the graph looks on a
straight line. To draw this for Pulse in survey data set in Rgui console, simply type qqnorm(survey$Pulse).� �

In EZR, select [Original menu], [Graphs], [Quantile comparison plot...], then select [Pulse] and click [OK].
Some options can be selected. Here [Original menu] includes all items of Rcmdr� �

Stem and leaf plot Stacking rough value as stem and aligning the lowest digits as leafs. The whole shape is similar to histogram,
but plotting numbers instead of rectangles. In Rgui console, type stem(survey$Pulse).� �

In EZR, select [Graphs], [Stem-and-leaf display], then select [Pulse] and click [OK]. The stem and leaf plot is
drawn in the output window, instead of graph window.� �

Box and whisker plot Draw a box with top line being Q3 and bottom line being Q1, where the center line is median. Adding 1.5
times IQR “whisker” on top and bottom, but if the whiskers go over minimum or maximum, it must be cut there. If there are
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outliers beyond the whiskers, those will be plotted as small circles. Stratified box-and-whisker plot is useful to compare the
distributions among strata. For example, to draw the box-and-whisker plot of Pulse stratified by Smoke in Rgui console,
type boxplot(survey$Pulse ~ survey$Smoke).� �

In EZR, select [Graphs], [Boxplot], then select [Pulse] as “Variable (pick one)” and [Smoke] as “Grouping
variable (pick 0 or 1)”, and check radio-button of (1Q-1.5xIQR)-(3Q+1.5xIQR), then click [OK]. Three other
kinds can be specified as the range of whisker.
As similar graph, plotting means with error bars is also possible. Select [Graphs], [Line graph (means)], then
select [Pulse] as “Response Variable (pick one)” in the left panel and [Smoke] as “Factors (pick one or two)” in
the right panel. After checking the kind of “Error Bars” (Standard errors, Standard deviations, and Confidence
intervals are possible. If you don’t need error bars, check “No error bars”), click [OK].
Sometimes (especially in laboratorial work) bar chart with error bars are made for the same purpose. It’s
also possible in EZR by selecting [Graphs], [Bar graph (Means)], though line graph (means) is much more
recommended. The only advantage of this graph in EZR is the possibility to simultaneously specify two groups.� �

Radar chart More than 3 variables are radially aligned and connecting plots as polygons. It is also known as spider chart. One
radar chart will be made for each subject, so that the comparison of several radar charts will become possible by drawing
multiple charts in one figure. To draw this, additional package (plotrix or fmsb) is needed. From CRAN mirror sites, you
can download and install them by typing install.packages("plotrix") and install.packages("fmsb"). Once
doing so, type library(fmsb) and example(radarchart) in Rgui console, you will know how to use it. This graph is
not supported by Rcmdr nor EZR.

Scatter plot To show relationships between 2 continuous variables, plotting the points with one variable as x axis and the other
as y axis. For example, you can see the relationships between height Height as y-axis and age Age as x-axis in survey
data set, by typing plot(Height ~ Age, data=survey) in Rgui console. If you plot the points of Males and Females in
different color/mark, you can use pch=as.integer(Sex) and col=c("Pink","Blue")[as.integer(Sex)] options.� �

In EZR (this function is almost same as Rcmdr), select [Graphs], [Scatterplot], then select [Age] as x-variable
(left box) and [Height] as y-variable (right box), and click [OK]. Several options can be specified, including
stratified plotting. If you would like to identify each data points by clicking graph, before clicking [OK], check
the box of [Identify points].� �

5 Statistical tests to compare 2 groups

Medical research has traditionally preferred “hypothesis testing”. But, the hypothesis testing is to limit the information origi-
nally included in data into the simple binary information whether the hypothesis can be rejected or not. It’s too simplifying, but
traditionally used in many publications. Nonetheless, some modern epidemiologists like Kenneth J. Rothman or Sandra Greenland
recommend to use the estimation of confidence intervals or drawing p-value plot*12, instead of hypothesis testing.

As a typical example, let’s see the testing of null-hypothesis that the means of independent 2 groups are not different. Usually the
researcher must determine the significance level of the test in advance. The significance level of a test is such that the probability
of mistakenly rejecting the null hypothesis is no more than the stated probability. There are two ways of thinking. In a Fisherian
manner, the p-value (significant probability) is the probability conditional on the null hypothesis of the observed data or more
extreme data. If the obtained p-value is small then it can be said either the null hypothesis is false or an unusual event has occurred.
In a Neyman-Pearson’s manner, both a null and an alternative hypothesis must be defined and the researcher investigates the repeat
sampling properties of the procedure, i.e. the probability that a decision to reject the null hypothesis will be made when it is in fact
true and should not have been rejected (this is called a "false positive" or Type I error) and the probability that a decision will be
made to accept the null hypothesis when it is in fact false (Type II error). These two way of thinking should be distinguished.

Usually, the significance level should be set as 0.01 or 0.05 before the hypothesis testing and if the obtained p-value is less than
the significance level, the null-hypothesis is rejected to judge that there is a statistical significance.

A summary of statistical hypothesis testing between independent 2 groups is:

*12 This function is implemented as pvalueplot() function in the fmsb package previously mentioned.
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1. Continuous variable:
（a）Obeying normal distribution*13: Welch’s t-test (in Rgui console, t.test(x,y))*14

（b）Otherwise: Wilcoxon’s rank sum test (in Rgui console, wilcox.test(x,y))
2. Categorical variable: chi-square (χ2) test for proportions (in Rgui console, prop.test()). But it is mathematically same

as the test of independence between the two categorical variables, which means the fact that Fisher’s exact test is an “exact”
alternative of this test.

Let’s consider the example to test the null-hypothesis “Mean height is not different between males and females in “survey” data
set. Resulted summary should be given like the following table*15, whereas some reviewers may request to add the result of F-test.
Each procedure will be explained in the following subsections.

Table. Comparison of the heights (cm) between females and males of Australian college students.
Gender Mean SD p†

Females 165.7 6.2 < 0.001
Males 178.8 8.4
† The significant probability (p-value) as the result of Welch’s t-test.

However, usually two or more anthropometric measurements are summarized in one table like below.

Table. Comparison of the age and anthropometric measurements between males and females of Australian college students.
Females Males

Items Mean SD Mean SD p†

Age (years) 20.4 6.9 20.3 6.1 0.93
Height (cm) 165.7 6.2 178.8 8.4 < 0.001
Pulse (beats/min.) 75.1 11.4 73.2 12.0 0.256
† The significant probability (p-value) as the result of Welch’s t-test.

5.1 F-test for the testing equal variances

Assume two continuous variables X and Y. Calculate the unbiased variances of these two variables, SX<-var(X) and
SY<-var(Y). If SX>SY, calculate the ratio of the larger to smaller, as F0<-SX/SY. The F0 obeys the F-distribution of the
first degree of freedom (d.f.) DFX<-length(X)-1 and the second d.f. DFY<-length(Y)-1. Therefore, the p-value is
1-pf(F0,DFX,DFY). Simply, var.test(X, Y) can do so. If the data frame includes one quantitative variable X and one group
variable C, it can be done by var.test(X~C). For example, to test the null-hypothesis that the variances of heights (Height) are
not different by sex (Sex) in the survey data set, type var.test(Height ~ Sex, data=survey).� �

In EZR, select [Statistical analysis], [Continuous variables], [Two variances F-test], then select [Height] as “Response
Variable (pick one)” in the left panel and [Sex] as “Groups (pick one)” in the right panel, and click [OK]. To be shown
as the candidates of [Groups], the variable must be a factor in Rcmdra, but not necessary in EZR.

a If the variable to be used as [Groups] is numeric, it can be changed using [Data], [Manage variables in active data set], [Convert numeric variables to
factors]� �

*13 It can be tested by Shapiro-Wilk test (using shapiro.test() in Rgui console and [Statistical analysis][Continuous variables][Kolmogorov-Smirnov test
for normal distribution] in EZR, but it is not recommended to simply apply the result to determine whether the non-parametric test might be used or not.

*14 Some researchers recommend to do F-test for the null-hypothesis of equal variances in variance, and if the variances are different, those two samples might
come from different populations. Traditionally, the two-stage testing was recommended by some statisticians, that is, doing normal t-test if the result of
F-test is not significant and Welch’s t-test otherwise. But recently according to the simulation studies by Dr. Shigenobu Aoki (Gunma Univ.), it was proved
that Welch’s t-test can achieve the most unbiased result compared with such two-stage testing. So Welch’s t-test is always recommended.

*15 Note: the result of Welch’s t-test give the p-value of < 2.2e-16 in R and EZR, which means the p-value is “less than 2.2 × 10−16”. Usually it should be
expressed as < 0.001 because the differences in extremely small p-values have no meaning. For large p-values, precise values should be given. Even for
p-values more than the significance level, exact values are better than NS.
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5.2 Welch’s t-test for the testing equal means

Calculate t0 = |E(X) − E(Y)|/
√

S X/nX + S Y/nY . The t0 obeys t-distribution of the degree of freedom ϕ, where

ϕ =
(S X/nX + S Y/nY )2

{(S X/nX)2/(nX − 1) + (S Y/nY )2/(nY − 1)}

In Rgui console, simply type t.test(X, Y) or t.test(X~C). For example, to test the null hypothesis that the mean heights
(Height) are not different by sex (Sex) in the survey data set, type t.test(Height ~ Sex, data=survey).� �

In EZR, select [Statistical analysis], [Continuous variables], [Two sample t-test], then select Height as “Response
Variable (pick one)” and Sex as “Grouping variables”, check the radio button of No (Welch test) for “Assume
equal variances?”, and click [OK]. The result will appear in the Output Window.� �
When you have means and unbiased standard deviations for 2 groups, popular expression of the graph is barplot with error

bars*16, but if you have raw data, the stripchart will be recommended.
An example. If there are the 2 numerical variables V <- rnorm(100,10,2) and W <- rnorm(60,12,3), those can be con-

verted as follows.� �
X <- c(V,W)

C <- as.factor(c(rep("V",length(V)),rep("W",length(W))))

x <- data.frame(X,C)� �
or� �
x <- stack(list(V=V,W=W))

names(x) <- c("X","C")� �
Then we can make stripcharts with error bars as follows.� �
stripchart(X~C, data=x, method="jitter", vert=TRUE)

Mx <- tapply(x$X,x$C,mean)

Sx <- tapply(x$X,x$C,sd)

Ix <- c(1.1,2.1)

points(Ix, Mx, pch=18, cex=2)

arrows(Ix, Mx-Sx, Ix, Mx+Sx, angle=90, code=3)� �
Exercise� �

Let’s use infert data set from datasets package. It has been cited from Trichopoulos et al. (1976) Induced abortion ans secondary
infertility. Br J Obst Gynaec, 83: 645-650.
The data include several variables from the OB/GYN patients with secondary infertility, of whom original candidates were 100, but two
controls with matched age, parity and education were found for only 83 patients, so that the number of samples were 248 (because the
74th patients had only one matched control, another control was excluded because who had each two times of spontaneous and induced
abortions, respectively).
Included variables are:
education Factor variable to show education period, with 3 levels: 0 = "0-5 years", 1 = "6-11 years", 2 = "12+ years"
age Numeric variable for age in years of case
parity Numeric variable for the number of ever-borne children
induced Numeric variable for the number of prior induced abortions with 2 values: 1 = 1, 2 = 2 or more.
case Numeric variable to show the status of case or control: 1 means case, 0 means control.
spontaneous Numeric variable to show the number of prior spontaneous abortions: 0 = 0, 1 = 1, and 2 = 2 or more.
stratum Integer variable to show the matched set number: 1-83.
pooled.stratum Numeric variable to show the pooled stratum number: 1-63.
Test the null-hypothesis that the mean numbers of prior spontaneous abortions are not different betweem case and control. Let the signifi-
cance level 0.05.� �
This data set is much more suitable for the fitting of the logistic regression model, but here we try to check the differences

*16 barplot() and arrows() will be used to draw this kind of graph. In EZR, it is automatically drawn in the process of [Two sample t-test] menu.
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of means. In this data set, “2 or more” is coded as 2, so that the exact means cannot be calculated, but here we ignore this
incorrectness.

By Rgui console, it’s very simple. To executing required t-test, type as, t.test(spontaneous ~ case, data=infert)*17� �
In EZR, select [File], [Read data set from an attached package], then double-click datasets from the left panel, then
double-click infert from the right panel, then click [OK]. You may successfully load the “infert” data. Then, select
[Graphs], [Boxplot], then select spontaneous as “Variable (pick one)” and case as “Grouping variable (pick 0 or
1)”, then click [OK]. By doing so, you can graphically see the box and whisker plots for controls and infertile groups
separately. Otherwise, select [Graphs], [Line graph (Means)], then select spontaneous as “Response Variable (pick
one)”, case as “Factors (pick one or two)”, and click [OK]. You will see the plot of means (connected by solid line)
with error bars of unbiased standard deviations.
Then, select [Statistical analysis], [Continuous variables], [Independent samples t-test], then select case as [Groups]
and spontaneous as [Response Variable] and checking the radio button beside [No] of “Assume equal variances?”,
then click [OK]. The result will appear in the Output Window (If you would also like to test the equal variance
hypothesis, select [Statistical analysis], [Continuous variables], [Two-variances F-test...], then select case as [Groups]
and spontaneous as [Response Variable], and click [OK]).� �

5.3 Wilcoxon’s rank sum test

Wilcoxon’s rank sum test is an typical nonparametric test to compare the location parameter of 2 independent groups, which
corresponds to t-test to compare the means of two independent groups. It is mathematically equivalent test with Mann-Whitney’s
U-test.

The principle of the Wilcoxon’s rank sum test is to compare ranks instead of quantitative values. The procedure can be summa-
rized as follows.

1. Let a variable X contain the values of {x1, x2, ..., xm} and another variable Y contain the values of {y1, y2, ..., yn}.
2. First of all, mix the all values of X and Y and rank them in ascending order*18. For example, x8[1], y2[2], y17[3], ..., x4[N],

where N = m + n.
3. Next, calculating the sum of ranks for each variable. However, the overall sum of ranks is clearly (N + 1)N/2, so that

calculate the sum of ranks for X. The sum of ranks for Y can be calculated as those difference.
4. Let the rank of xi (i = 1, 2, ...,m) included in X as Ri, the sum of rank for X is

RX =

m∑
i=1

Ri

Here, too large or too small RX suggests that the null hypothesis “H0: The location of distribution X and that of Y are not
different.” is improbable*19.

5. Under the null-hypothesis, X is randomly extracted m samples from N samples, and the rest consititutes Y . About the rank,
extract m numbers from the rank of 1, 2, 3, ...,N. Ignoring ties, the number of possible combinations are NCm*20.

6. If X > Y , let the number of cases that the sum of ranks is equal to or larger than RX k, among NCm.
7. If k/NCm < α (α is the significance level), reject H0. That’s the way of exact calculation.
8. For large samples, normal approximation is applicable. Under the null-hypothesis, the expected value of rank sum E(R) is,

because each rank value may be at equal probability from 1 to N,

E(R) =
m∑

i=1

E(Ri) = m(1 + 2 + ... + N)/N = m(N + 1)/2

The variance of rank sum is, because var(R) = E(R2) − (E(R)2),

E(R2) = E((
m∑

i=1

Ri)2) =
m∑

i=1

E(R2
i ) + 2

∑
i< j

E(RiR j)

*17 And var.test(spontaneous ~ case, data=infert) if you would like to test the null hypothesis that the variances of cases and controls are equal.
*18 If the values contain ties, special treatment is needed.
*19 If we write the sum of rank for X as RS, 2*(1-pwilcox(RS,m,n)) gives the exact p-value of two-sided Wilcoxon’s rank sum test of the null-hypothesis in

Rgui console.
*20 choose(N,m) in Rgui console.
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E(R2
i ) = (12 + 22 + ... + N2)/N = (N + 1)(2N + 1)/6

E(RiR j) =
1

N(N − 1)
{(

N∑
k=1

k)2 −
N∑

k=1

k}

=
1

N(N − 1)
(
N2(N + 1)2

4
− N(N + 1)(2N + 1)

6
)

=
(N + 1)(3N + 2)

12

Then finally we obtain:
var(RX) = m(N + 1)(N − m)/12 = mn(N + 1)/12

9. From expected value and variance, standardize*21 the rank sum with continuity correction*22, then caluculate,

z0 = {|RX − E(RX)| − 1/2}/
√

var(RX)

For large m and n, z0 obeys the standard normal distribution, so that we can judge the result showing statistically significant
difference at 5% significance level if z0 > 1.96. In Rgui console, let z0 as z0, simply typing 2*(1-pnorm(z0,0,1)) gives
the p-value.

10. However, special treatment is necessary for ties. For example, the variable X is {2, 6, 3, 5} and Y is {4, 7, 3, 1}, the value 3 is
included in both X and Y . In such case, giving mean rank (as shown in the table below) to both leads to solution.

Variable Y X X Y Y X X Y
Value 1 2 3 3 4 5 6 7
Rank 1 2 3.5 3.5 5 6 7 8

11. Nonetheless, the variance of rank sum, used in the normal approximation, will change. Under the null-hypothesis,

E(RX) = m(N + 1)/2

is unchanged but

var(RX) = mn(N + 1)/12 − mn/{12N(N − 1)} ·
T∑

t=1

(d3
t − dt)

where T is the number of sets of ties and dt is the number of tth tied data. In the above example, T = 1 and d1 = 2.

To practice, activate (click the current “Data set:” name and select) survey data set again. Let’s test the null-hypothesis that the
locations of the distribution of Height are not different by Sex.

In Rgui console, it can be done by wilcox.test(Height ~ Sex, data=survey).� �
In EZR, after selecting [survey] as active [Data set], select [Statistical analysis], [Nonparametric tests], [Mann Whitney
U test], then select Sex in the [Groups] box and Height in the [Response Variable] box, and click [OK]. Here you can
explicitly specify the type of test as exact test, normal distribution, or normal approximation with continuity correction.� �

5.4 Testing the equality of proportions in two independent groups

Let’s consider the n1 patients and n2 controls. The numbers of individuals with a specific feature were r1 in the patients and r2

in the controls, then the sample proportions with the feature are p̂1 = r1/n1 in the patients and p̂2 = r2/n2 in the controls.
Here we will test the null-hypothesis that those proportions in the patients’ source population and in the controls’ source popu-

lation (p1 and p2, respectively) are not different.
The point estimate of p1 is p̂1 and the point estimate of p2 is hatp2. The expected difference between p1 and p2 can be estimated

as p̂1 − p̂2 and the variance of the difference can be calculated as V( p̂1 − p̂2) = p1(1 − p1)/n1 + p2(1 − p2)/n2. Under the null-
hypothesis, we can assume p1 = p2 = p, then V(p̂1 − p̂2) = p(1 − p)(1/n1 + 1/n2). Replacing p by p̂ = (r1 + r2)/(n1 + n2), and
denoting q̂ = 1 − p̂, when n1 p1 > 5 and n2 p2 > 5, we can standardize p̂1 − p̂2 and apply the normal appoximation,

Z =
p̂1 − p̂2 − E( p̂1 − p̂2)√

V( p̂1 − p̂2)
=

p̂1 − p̂2√
p̂q̂(1/n1 + 1/n2)

∼ N(0, 1)

*21 Subtracting mean from each value and dividing them by square root of the variance.
*22 To improve approximation by the normal distribution, subtracting or adding 1/2 about each number.
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For the continuity correction,

Z =
| p̂1 − p̂2| − (1/n1 + 1/n2)/2√

p̂q̂(1/n1 + 1/n2)

and we can reject the null-hypothesis when Z is greater than 1.96.
For example, let’s test the null-hypothesis that the smoker’s proportions are not differenct between both 100 patients and controls

where the numbers of smokers were 40 and 20, respectively.� �
p <- (40+20)/(100+100)

q <- 1-p

Z <- (abs(40/100-20/100)-(1/100+1/100)/2)/sqrt(p*q*(1/100+1/100))

2*(1-pnorm(Z))� �
Typing above into Rgui console, [1] 0.003370431 will be obtained. Because 0.0033... is less than 0.05, we can judge to reject

the null-hypothesis at 5% significance level.
The 95% confidence intervals of the expected difference of proportions can be estimated by typing the following.� �
dif <- 40/100-20/100

vardif <- 40/100*(1-40/100)/100+20/100*(1-20/100)/100

difL <- dif - qnorm(0.975)*sqrt(vardif)

difU <- dif + qnorm(0.975)*sqrt(vardif)

cat("Expected difference of proportions=",dif," 95% conf.int.= [",difL,",",difU,"]\n")� �
The result will be [0.076,0.324]. For the continuity correction, subtracting (1/n1 + 1/n2)/2 = (1/100 + 1/100)/2 = 0.01 from

the lower limit and adding the same value to the upper limit, the 95% confidence interval will be [0.066,0.334].
In Rgui console, those calculation can be done by simply typing as follows.

smoker <- c(40,20)

pop <- c(100,100)

prop.test(smoker,pop)

To practice, let’s consider the null-hypothesis that the proportions of lefty writer are not different between males and
females in survey data set.

In Rgui console, typing prop.test(table(survey$Sex,survey$W.Hnd)) gives result of 2-sample test for equail-
ity of proportions with continuity correction. The prop 1 is the proportion of lefty writers in females and the prop 2
is that in males. To judge the statistical significance, see the p-value. Actually the test of proportions by nor-
mal approximation is mathematically equivalent to the test of chi-square test of contingency table, so that typing
chisq.test(table(survey$Sex,survey$W.Hnd)) gives the same p-value.� �

In EZR, select [Statistical analysis], [Discrete variables], [Create two-way table and compare two proportions (Fisher’s exact
test)], then select Sex as “Raw variable (pick one or more)”a and W.Hnd as “Column variable (pick one)”, and click the radio
button of “Yes” under “Continuity correction of chi-square test” and check both “Chi-square test” and “Fisher’s exact test” as
“Hypothesis Tests”, then click [OK].

a Raw is obviousy typo of Row.� �
6 Testing the difference of locations among 3 or more independent groups

To compare the means among 3 or more groups, you must not simply repeat t-tests for all possible pairs. In the statistical
hypothesis testing, setting significance level as 5% in each comparison provides much more type I error for overall comparisons.

To solve this problem, there are two different approaches. (1) Evaluate the effect of a group variable on a quantitative variable.
(2) Adjust the type I errors for multiple comparisons. Traditionally these approaches are conducted as two-steps: Only when the
effect of the group is statistically significant, the pairwise comparisons with adjustment for multiple comparisons will be done. In
that meaning, the latter step is called as post hoc analysis of the former step. However, it is recommended now that you should
select more appropriate approach according to the purpose of the analysis.
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6.1 One-way Analysis of Variance (ANOVA)

The typical analysis of the former approach to test the means among 3 or more groupps is one-way analysis of variance
(ANOVA). The one-way ANOVA decomposes the variance of the data into the variance by the group and the variance of random
errors. If the ratio of these variance is significantly different from 1, we can judge the effect of the group variable is statistically
significant.

For example, the heights of 37 adult males in 3 villages in the South Pacific were as follows. You can read the data from the web
site*23.

Unique ID Village Height (cm) Weight (kg)
(PID) (VG) (HEIGHT) (WEIGHT)
10101 X 161.5 49.2
10201 X 167.0 72.8
...

30301 Z 166.0 58.0
...

70312 Y 155.5 53.6

In Rgui console, to conduct one-way ANOVA of the null-hypothesis that VG has no significant effect on HEIGHT, type as follows.

sp <- read.delim("http://minato.sip21c.org/grad/sample2.dat")

summary(aov(HEIGHT ~ VG, data=sp))

Then you get the following result, so-called “ANOVA summary table”.

Df Sum Sq Mean Sq F value Pr(>F)

VG 2 422.72 211.36 5.7777 0.006918 **

Residuals 34 1243.80 36.58

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here the number of * at right is the codes for significance shown in the bottom line, but the Pr(>F), the significant probability,
is more important. The column of Sum Sq means the sum of squared difference of each value with the mean. The value of VG’s
Sum Sq is 422.72, which is the sum of number of individuals times the squared difference between the mean in each village and the
overall mean. This value is called as inter-group (inter-class) variation. The Residuals’s Sum Sq, 1243.80, is the sum of squared
difference between each individual’s height and the mean height of the village where the individual belongs to, which is called as
within-group (within-class) variation or error variation. The Mean Sq is mean squared difference, which is the value of Sum Sq
divided by Df, where Df is degree of freedom. The Mean Sq is the variance, so that VG’s Mean Sq, 211.36 is the inter-group
variance and Residuals’s Mean Sq, 36.58 is the error variance. Then, the F value is the ratio of variances, which is the value of
inter-group variance divided by error variance. The ratio of variances obeys F-distribution, The significant probability Pr(>F) is
obtained from F-distribution. Here the Pr(>F) is 0.006918, so that the effect of VG can be judged as statistically significant at 5%
significance level. We can reject the null-hypothesis, and the heights of them significantly differ by village.� �

In EZR, to read sample2.dat into sp data set, select [File], [Import data], [from text file, clipboard, or URL...], then
type sp in the box of “Enter name for data set:”, check the ratio button beside “Internet URL”, and check the radio
button beside [Tabs] of “Field Separator” and click [OK], then type http://minato.sip21c.org/grad/sample2.dat
as Internet URL and click [OK]. Next, select [Statistical analysis], [Continuous variables], [One-way ANOVA], then
select HEIGHT as “Response Variable (pick one)” and VG as “Grouping variables (pick at least one)” and , and click
[OK].� �
Traditionally speaking, one-way ANOVA should be done only after testing the null-hypothesis that the variances of groups are

not different (by Bartlett’s test or other test). In Rgui console, you can do so by typing bartlett.test(HEIGHT ~ VG, data=sp).
The obtained p-value, 0.5785 means that we cannot reject null-hypothesis. After confirming it, we can safely apply one-way

*23 http://minato.sip21c.org/grad/sample2.dat
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ANOVA.� �
In EZR, select [Statistical analysis], [Continuous variables], [Bartlett’s test], then select HEIGHT as [Response Variable]
andVG as [Groups], then click [OK].� �
However, such kind of two-steps analysis may cause multiple comparisons problem, so that Welch’s extended one-way ANOVA

without testing equal variance is the most appropriate.
In Rgui console, type oneway.test(HEIGHT ~ VG, data=sp), then you can get the p-value by the Welch’s extended one-way

ANOVA. The p-value, 0.004002 is less than 0.05, so that we can judge the effect of village on the height is statistically significant
at 5% significance level. Unfortunately, EZR has no menu item for oneway.test() now. Nonetheless, manually modifying the
script (putting oneway.test instead of aov) in “Script Window” and click “Submit”, it can be done.

6.2 Kruskal-Wallis test and Fligner-Killeen test

The Kruskal-Wallis test is the nonparametric test to compare the locations of distributions among 3 or more groups, so that it
seems a nonparametric alternative of ANOVA.

In Rgui console, type kruskal.test(HEIGHT ~ VG, data=sp).� �
In EZR, select [Statistical analysis], [Nonparametric tests], [Kruskal-Wallis test], then select HEIGHT as [Response
Variable] and VG as [Groups], then click [OK].� �
The Fligner-Killeen test is the test the null hypothesis that the variances in each of the groups are the same in nonparametric

manner. It seems a nonparametric alternative of Bartlett’s test.
In Rgui console, type fligner.test(HEIGHT ~ VG, data=sp). EZR has no menu item for Fligner-Killeen test.

6.3 Pairwise comparisons with adjustment of multiple comparisons

There are many methods to adjust type I errors such as Bonferroni’s method, Holm’s method, Tukey Honest Significant Dif-
ferences (Tukey’s HSD), and so on. Except Tukey’s HSD, many adjustment methods are applicable in pairwise.t.test(),
pairwise.wilcox.test(), or pairwise.prop.test(), where the pairwise.prop.test() is to test the proportions of 3 or
more groups.

To compare means, pairwise t-test with Holm’s adjustment or Tukey’s HSD can be used. To compare medians, pairwise
Wilcoxon’s rank sum test with Holm’s adjustment is appropriate.

For example, compare the means of height between the all pairs among 3 villages in sp data set.
In Rgui console, type either of the following lines:

pairwise.t.test(sp$HEIGHT, sp$VG, p.adjust.method="holm")

TukeyHSD(aov(HEIGHT ~ VG, data=sp))� �
In EZR, Bonferroni, Holm, Tukey’s HSD and Dunnett’s methods are applicable from One-way ANOVA menu. Select
[Statistical analysis], [Continuous variables], [One-way ANOVA], then select VG as [Groups] and HEIGHT as [Response
Variable] and check the one of 4 boxes beside Pairwise comparison (Bonferroni) and others, then click [OK]. After
the result of ANOVA, the result of multiple comparisons of means will appear in the Output Window and the graph of
simultaneous confidence intervals for each group.� �

6.4 Dunnett’s multiple comparisons

Dunnett’s method to adjust multiple comparison of means is used in the comparison of multiple treatment groups with a common
control group. For example, randomly assign the 15 hypertension patients to 3 groups (each 5), which are treated by placebo, by
usual drug, and by new drug. After 1 month treatment, the decrease of systolic blood pressures (mmHg) were [5, 8, 3, 10, 15] for
the placebo group, [20, 12, 30, 16, 24] for the usual drug group, and [31, 25, 17, 40, 23] for the new drug group*24.

Here we can apply the Dunnett’s multiple comarisons to compare the mean reductions of systolic blood pressure of placebo

*24 The data can be downloaded as http://minato.sip21c.org/bpdown.txt
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group with both usual drug group and new drug group. In Rgui console, type below.� �
bpdown <- data.frame(

medicine=factor(c(rep(1,5),rep(2,5),rep(3,5)),

labels=c("placebo","usualdrug","newdrug")),

sbpchange=c(5, 8, 3, 10, 15, 20, 12, 30, 16, 24, 31, 25, 17, 40, 23))

summary(res1 <- aov(sbpchange ~ medicine, data=bpdown))

library(multcomp)

res2 <- glht(res1, linfct = mcp(medicine = "Dunnett"))

confint(res2, level=0.95)

summary(res2)� �
Basically, after loading multcomp library, give the resulted object of ANOVA to glht() function and specify "Dunnett" for
linfct= option.� �

In EZR, after reading data from internet, select [Statistical analysis], [Continuous variables], [One-way ANOVA], then
select VG as [Groups] and HEIGHT as [Response Variable] and check the box beside appropriate pairwise comparison
methods (Bonferroni, Holm, Tukey or Dunnett), then click [OK]. After the result of ANOVA, the results of multiple
comparisons will appear in the Output Window. In Dunnett’s method, the categories are sorted by alphabetical order
and the first category is treated as the common control group (reference category), so that if you want to use another
category as reference, you must reorder the variable in advance using [Active data set], [Variables], [Reorder factor
levels].
For non-parametric multiple comparison, Bonferroni, Holm, Steel-Dwass (non-parametric analogue of Tukey) or Steel
(non-parametric analogue of Dunnett) can be specified in [Kruskal-Wallis test] menu.� �
Recently developed method for multiple comparison, controlling the false discovery rate (FDR) among the rejected hypothe-

ses (Benjamini Y and Hochberg Y, “Controlling the false discovery rate: A practical and powerful approach to multiple test-
ing.” J. Royal Stat. Soc. Ser. B, 57(1): 289-300, 1995). It can be done by typing "fdr" instead of "holm" or "bon" in the
p.adjust.method= option of pairwise.t.test or pairwise.wilcox.test functions.

7 Testing the differences of proportions among 3 or more groups

The R function of prop.test() is applicable for the comparison among 3 or more groups, where the null-hypothesis is that
there is no difference of proportions among all groups. If you can reject the null-hypothesis, usually do pairwise comparison with
adjustment of multiple comparisons.

Let’s consider the survey data set in MASS package again. To compare the lefty proportions among the 3 groups of clapping
hands with pairwise comparisons, type into Rgui console as follows.

prop.test(table(survey$Clap, survey$W.Hnd)) # same as prop.test(xtabs(~Clap+W.Hnd, data=survey))

pairwise.prop.test(table(survey$Clap, survey$W.Hnd), p.adjust.method="holm")� �
In EZR, after activating survey (by clicking the box beside [Data set:] and selecting survey and click [OK]), the
method is similar to the case of analyzing 2x2 table. Select [Statistical analysis], [Discrete variables], [Create two-way
table and compare two proportions (Fisher’s exact test)], then select W.Hnd as “Raw variable (pick one or more)”a

and Clap as “Column variable (pick one)”, and check the box beside either “pairwise comparison (bonferroni)”
or “pairwise comparison (holm)”, check both or either “Chi-square test” and “Fisher’s exact test” as “Hypothesis
Tests”, then click [OK]. The important point is the specifying method of row and column variables. In the case to use
pairwise.prop.test(), 3x2 table should be given, but in EZR, 2x3 table should be given for pairwise comparisons.

a Raw is obviousy typo of Row.� �
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8 Comparisons for 2 or more measurements for the same subjects

8.1 Paired t-test

If the comparison is done between 2 paired values for each subject (for example, comparison between the before and after the
treatment), paired t-test is more effective than independent two sample t-test, because it considers individual differences.

The paired t-test is exactly same as (1) to calculate each difference and (2) test the null-hypothesis that mean difference is not dif-
ferent from zero. For example, to test the two hand sizes by the paired t-test in survey, type t.test(survey$NW.Hnd, survey$Wr.Hnd, paired=TRUE)
or t.test(survey$NW.Hnd-survey$Wr.Hnd,mu=0). To draw appropriate graph, type as below.

Diff.Hnd <- survey$Wr.Hnd - survey$NW.Hnd

C.Hnd <- ifelse(abs(Diff.Hnd)<1,1,ifelse(Diff.Hnd>0,2,3))

matplot(rbind(survey$Wr.Hnd, survey$NW.Hnd), type="l", lty=1, col=C.Hnd, xaxt="n")

axis(1,1:2,c("Wr.Hnd","NW.Hnd"))� �
In EZR, after activating survey data set, select [Statistical analysis], [Continuous variables], [Paired t-test], then select
[NW.Hnd] as [First variable] and [Wr.Hnd] as [Second variable] and click [OK].� �

8.2 Wilcoxon’s signed rank test

Wilcoxon’s signed rank test is the nonparametric version of paired t-test. Here I will not give any explanation, but it is explained
in many statistics textbooks.

To practice, let’s test the null-hypothesis that the locations of the distribution of Wr.Hnd and NW.Hnd of survey data set are not
different. Here we also set the significance level as 5%.

In Rgui console, simply typing wilcox.test(survey$Wr.Hnd, survey$NW.Hnd, paired=TRUE) gives the result. If the
p-value shown in the Output Window is less than 0.05, we can judge to reject the null-hypothesis.� �

In EZR, after activating survey data set, select [Statistical analysis], [Nonparametric tests], [Wilcoxon’s signed rank
test], then select NW.Hnd as the [First variable] at the left box and Wr.Hnd as the [Second variable] at the right box, and
click [OK]. You can specify the type of test as same as the case of Wilcoxon’s rank sum test, though usually leaving
that radio button [Default] is enough.� �

8.3 Repeated Measures ANOVA and Freedman test

Comparison among the repeated measures 3 times or more require to consider the changing values within each individual
instead of the mean difference among the times at measurements. The typical methods to analyze such data are “repeated measures
ANOVA” and “Freedman test”. The latter is a kind of non-parametric tests. Here both methods are explained using EZR.

First of all, the data must be aligned as wide-format rather than long-format: Data at different times must be given as different
variables, where each line means one individual. Names of time-dependent variables must be given as alphebetical order. If not,
rename using [Active data set], [Variables], [Rename variables].

The flow of analysis is: reading data, drawing graph for each individual, then conducting statistical analysis. The statistical
analysis is composd of the following three parts.

1. See the effects of Group(s), Time, Interaction from ANOVA table
2. Check sphericity (Null-hypothesis: equal variances among time)
3. If the result of sphericity test is significant, see G-G or H-F adjustment, instead of ANOVA table.

Example 1. Skin electric potential (mV) after various stimuli in 8 individuals

• Read data from http://minato.sip21c.org/hypno-psycho01.txt.
• Draw graph of raw data: [Graphs][Line graph (Repeated measures)], then select calmness, despair, fear, happiness.
• The graph looks not normally distributed. Values are not independent so that one-way ANOVA is not appropriate. Though
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the intra-individual factor is not “time”.
• Null-hypothesis: Skin electric potentials are not different by the kind of psychological stimuli.
• Statistical analysis: [Nonparametric tests], [Friedman test], then select calmness, despair, fear, and happiness, then click

[OK].

The result will be Friedman chi-squared = 6.45, df = 3, p-value = 0.09166. The result is not significant at 5%
level.
Example 2. Changes of plasma inorganic phosphate after OGTT for 33 individuals

• Reading data: select [File], [Import data], [Read Text Data From Flie, Clipboard, or URL], then specify ogtt02 at “Name:”
field, URL at “From:”, tabs at “Delimiter”. The type http://minato.sip21c.org/ogtt02.txt as URL.
• Drawing a graph of raw data: select [Graphs], [Line graph (Repeated measures)]. As “Repeatedly measured data:”, select
T.0, T.0.5,…, T.5 and as “Grouping variable:” select GROUP.
• The data includes 2 GROUPs: 1 is Control, 2 is Obesity. The analysis tests the effect of TIME, GROUP, and interaction.

The results in Output Window are shown below. Here GROUP’s effect is significant from the top panel. The effects of Time and
interaction should be judged from the result of GG adjustment shown as bottom panel, because the result of sphericity test was
significant (shown in the middle panel).� �
Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

SS num Df Error SS den Df F Pr(>F)

(Intercept) 3173.3 1 73.581 31 1336.9260 < 2.2e-16 ***

Factor1.GROUP 13.2 1 73.581 31 5.5464 0.02503 *

Time 42.3 7 36.438 217 35.9602 < 2.2e-16 ***

Factor1.GROUP:Time 9.4 7 36.438 217 7.9881 1.255e-08 ***

--- Signif. Codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Mauchly Tests for Sphericity

Test statistic p-value

Time 0.05137 9.4322e-08

Factor1.GROUP:Time 0.05137 9.4322e-08

Greenhouse-Geisser and Huynh-Feldt Corrections for Departure from Sphericity

GG eps Pr(>F[GG])

Time 0.57374 < 2.2e-16 ***

Factor1.GROUP:Time 0.57374 8.868e-06 ***

---Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1� �
In the example 2, non-parametric test for checking the effect of Time is still possible. Select [Statistical analysis], [Nonparametric

test], [Friedman test], and select variables as T0, T0.5,…, T5, then click [OK]. The
The result is shown in Output Window as below. The effect of Time is statistically significant at 5% level.� �
Friedman chi-squared = 114.8377, df = 7, p-value < 2.2e-16� �

9 Relationship between the two quantitative variables

Two well-known methods to examine the relationship between the two quantitative variables are calculating correlation and
fitting the regression models.

First of all, drawing scattergram is necessary. Let’s consider the relationship between height and the span of spread writing hand
in survey data set.

In Rgui console, type plot(Wr.Hnd ~ Height, data=survey). If you would like to see the relationship separately for males
and females, use pch=as.integer(Sex) option.
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� �
In EZR, after activating [survey] data set, select [Graphs], [Scatterplot], then select Height as [x-variable] and Wr.Hnd
as [y-variable], check off the box beside “Smooth Line”, and click [OK]. Plotting by different markers for males and
females, click the [Plot by groups...] button and select Sex before the clicking final [OK].
However, in EZR, scatterplot is automatically done when conducting correlation analysis.� �

9.1 The difference between correlation and regression

The correlation means the strength of the relationship between 2 variables, and the regression means how much the variance of
a variable can be explained by the variance of the other variable, by fitting the linear model.

9.2 Correlation analysis

The relationship shown as scatterplot may be apparent or spurious correlation. The researcher must always pay attention to it.
To show the strength of correlation, Pearson’s product moment correlation coefficients are usually used. As nonparametric (using

rank) version, the Spearman’s rank correlation coefficients are also used.
The definition of the Pearson’s correlation coefficient r between the 2 variables X and Y is,

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)√
n∑

i=1

(Xi − X̄)2
n∑

i=1

(Yi − Ȳ)2

The null-hypothesis that the r is not different from 0 can be tested using t0 value defined as follows and t-distribution with n − 2
degree of freedom.

t0 =
r
√

n − 2
√

1 − r2

In Rgui console, to calculate the Pearson’s correlation coefficient between heights and spread writing hand spans with null-
hypothesis testing, type as follows. For Spearman’s rank correlation coeffients, method="spearman" option can be used.

cor.test(survey$Height, survey$Wr.Hnd)� �
In EZR, select [Statistical analysis], [Continuous variables], [Test for Pearson’s correlation], then select Height and
Wr.Hnd (clicking with pressing

� �
Ctrl� �), and click [OK] (If you need Spearman’s rank correlation, use [Statistical anal-

ysis], [Non-parametric tests], [Spearman’s rank correlation test]). A scattergram is automatically generated, and the
following result will appear at the Output Window.� �� �

Pearson’s product-moment correlation

data: survey$Height and survey$Wr.Hnd

t = 10.7923, df = 206, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5063486 0.6813271

sample estimates:

cor

0.600991� �
The estimated r is 0.60 with 95% confidence interval of [0.50, 0.69]. The traditional criteria to judge the strength of correlation

are, more than 0.7 ‘strong’, 0.4-0.7 ‘moderate’, 0.2-0.4 ‘weak’.
To calculate the correlations for males and females separately, we must make subset of the data. In Rgui console, it’s easy to

calculate those as follows.

males <- subset(survey, Sex=="Male")
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cor.test(males$Height, males$Wr.Hnd)

females <- subset(survey, Sex=="Female")

cor.test(females$Height, females$Wr.Hnd)� �
In EZR, there are two ways to calculate correlations for males and females, separatelly. One way is making subset by:
select [Active data set], [Subset active data set], then type Sex=="Male" in the box below “Subset expression” and type
males in the box below “Name for new data set” and click [OK]. The active data set will automatically change from
survey to males. Then, select [Statistical analysis], [Continuous variables], [Test for Pearson’s correlation], and select
Height and Wr.Hnd (clicking with pressing

� �
Ctrl� �), and click [OK]. You will find the estimate of correlation coefficient

between Height and Wr.Hnd with the result of null-hypothesis testing of correlation coefficient being zero only for
males. To do similar calculation for females, at first you must change active dataset by clicking the box where males
is shown as active dataset, and select survey and click [OK]. Making females’ subset and analyzing it can be done in
similar manner with the males’ case.
Another way to calculate correlations for males and females is specifying “Condition to limit samples for analysis.”
field at the [Test for Pearson’s correlation] dialogue as Sex=="Male" or Sex=="Female".� �

9.3 Fitting a regression model

The principle of fitting regression models to observed data is that the variance of a dependent variable can be mostly explained by
the variance of independent variables. If the explanatory power is enough, substituting the independent variables by actual values
will serve a corresponding projection or estimation of the dependet variable. Reverse calculation is also possible, as in the case of
so-called “working curve”. A working curve (but often line, sometimes with transformation) provides the equation as regression
model for the series of observed absorptions for fixed concentrations. Usually a working line can be used when its explanatory
power is more than 98%.

If the zero-adjustment is done by standard solution with zero concentration, the regression line must go through the origin
(therefore, intercept must be zero), otherwise (zero-adjustment is done by pure water) the regression line may not go through the
origin.

For example, let the series of absorption for the standard solutions with fixed concentrations (0, 1, 2, 5, 10 µg/ℓ) as (0.24, 0.33,
0.54, 0.83, 1.32), when the zero-adjustment was done by pure water. If we denote the absorption variable as y and the concentration
variable as x, the regression model can be written as y = bx + a. The coefficients a and b (a is called as “intercept” and b is called
as “regression coefficient”) should be estimated by the least square method to find the set of a and b minimizing the sum of square
errors,

f (a, b) =
5∑

i=1

(yi − bxi − a)2

Solving the equations that each partial diffential of f (a, b) by a and b equals 0, then we can obtain the following 2 equations.

b =

5∑
i=1

xiyi/5 −
5∑

i=1

xi/5 ·
5∑

i=1

yi/5

5∑
i=1

xi
2/5 −

 5∑
i=1

xi/5


2

a =
5∑

i=1

yi/5 − b ·
5∑

i=1

xi/5

Using these a and b values and measured absorption (for example 0.67), we can estimate the unknown concentration of sample
solution. To note, the measured absorption of any sample must range within the values for standard solutions. The regression
model has no guarantee to stand outrange of standard solutions*25.

In Rgui console, we can apply lm() (linear model) to estimate the fitted regression model as follows.

y <- c(0.24, 0.33, 0.54, 0.83, 1.32)

*25 Such an extrapolation is not recommended. Usually concentrating or diluting the solutions to remeasure the absorption is recommended.
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x <- c(0, 1, 2, 5, 10)

# apply linear model fitting

res <- lm(y ~ x)

# show the summary of result

summary(res)

# draw scattergram with regression line

plot(y ~ x)

abline(res)

# calculate the concentration corresponding to the absorption of 0.67

(0.67 - res$coef[1])/res$coef[2]

The summary of result is shown below.� �
Call:

lm(formula = y ~ x)

Residuals:

1 2 3 4 5

-0.02417 -0.04190 0.06037 0.02718 -0.02147

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.26417 0.03090 8.549 0.003363 **

x 0.10773 0.00606 17.776 0.000388 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.04894 on 3 degrees of freedom

Multiple R-squared: 0.9906, Adjusted R-squared: 0.9875

F-statistic: 316 on 1 and 3 DF, p-value: 0.0003882� �
We can see that the estimated intercept was a = 0.26417 and regression coefficient was b = 0.10773, and the model explains

98.75% (0.9875) of the data, which is shown in Adjusted R-squared. The p-valuemeans the result (significant probability) of
testing the null-hypothesis (the extent how the variance of absorption can be explained by the model is similar to error variance).

The concentration for the absorption of 0.67 is given at last as 3.767084. Therefore, we can conclude that the concentration of
the solution, of which absorption was 0.67, was 3.8 µg/ℓ.
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� �
In EZR, the data must be entered as a data set. Select [File], [New data set] and type workingcurve in the box of
“Enter name for data set:”. After the “Data Editor” window appears, click [var1] and type y in the “variable name”
box and check the radio button of “numeric” as type and press

� �
Enter� �key. Next, change [var2] to [x] similarly. Then

enter the data into each cells, and close the window (usually select [File], [Close]).
To draw scattergram with regression line, select [Graphs], [Scatterplot], then select x as “x-variable” and y as “y-
variable”. Check off the box beside “Smooth Line” and click [OK].
To apply a linear regression model fitting, select [Statistical analysis], [Continuous variables], [Linear regression],
then select y as “Response variable” and x as “Explanatory variables”. Clicking [OK] leads to the summary of results
shown in the Output Window.� �
For other situations than working curves, linear regression models can be applied in a similar manner. Let’s go back to the

example of survey data set*26. If we want to explain the variance of the span of writing hand by the height, we can apply the
linear regression model to the survey data set by typing as follows in Rgui console.

res <- lm(Wr.Hnd ~ Height, data=survey)

summary(res)� �
In EZR, after activating survey as already mentioned, select [Statistical analysis], [Continuous variables], [Linear
regression], then select Wr.Hnd as “response variable” and Height as “Explanatory variables”. Clicking [OK] gives
the summary result.� �

9.4 Testing the stability of estimated coefficients

When the response variable has virtually no relationship with the explanatory variable, the sums of squared residuals for many
possible regression lines (any line on the centroid) may give almost same values. In other words, the estimated intercept and slope
are very unstable in such situation. To evaluate the stability of parameters of regression line (regression coefficient b and intercept
a), t0 values are usually used. Let the relationship between y and x be expressed by the equation of y = a0 + b0x + e, and assume
the error term e obeying the normal distribution with mean 0 and variance σ2, the estimated regression coefficient a would obey
the normal distribution of mean a0, variance (σ2/n)(1 + M2/V), where M and V are the mean and the variance of x. Then the sum
of squared residuals Q divided by the variance of error σ2 (say, Q/σ2) obeys the chi-square distribution with degree of freedom
(n − 2). Therefore, the t0(a0) defined as follows obeys the t-distribution with the degree of freedom (n − 2).

t0(a0) =
√

n(n − 2)(a − a0)√
(1 + M2/V)Q

However, to calculate this value, a0 must be known. Under the null hypothesis of a0 = 0, t0(0) calculated from the observed data
is almost matching with t0(a0) and obeys the t-distribution with degree of freedom (n − 2). The absolute value of t0(0) is less than
the 97.5% point of t-distribution at the 95% probability. We can also get the significance probability using the distribution function
(cumulative probability density function).

Similarly, we can calculate t0(b) for regression coefficient as follows.

t0(b) =
√

n(n − 2)Vb
√

Q

Using the relationship that the t0(b) obeys the t-distribution with degree of freedom (n − 2), we can calculate the significance
probability.

If the significant probability is very small (usually less than 5%, this criteria is called as the significance level of the test), we
can say that a0 or b0 is significantly different from zero, which means the stability of estimated a0 or b0.

In both Rgui concole and EZR, the significance probabilities are shown at the column of Pr(>|t|).

*26 Of course, the MASS package must be loaded before using survey data set.

27



10 Applied regression models

10.1 Multiple regression model

The explanatory variables can include two or more variables. In such case, the model is called as “multiple regression model”.
There are some points to pay attention, but basically the explanatory variables can be given as the right terms of linear model,
connected by +. For example, for the same data previously described, if you would like to explain the variance of the span of
writing hand (Wr.Hnd) by the variance of height (Height) and the variance of the span of non-writing hand (NW.Hnd), you may
type as follows in Rgui console.

res <- lm(Wr.Hnd ~ Height + NW.Hnd, data=survey)

summary(res)� �
In EZR, select [Statistical analysis], [Continuous variables], [Linear regression], then select Wr.Hnd as “response vari-
able”, and Height and NW.Hnd with pressing

� �
Ctrl� �key as “Explanatory variables”. Clicking [OK] leads to the sum-

mary of results shown in the Output Window.� �
In the multiple regression model, the estimated regression coefficients are the “partial regression coefficients”, which adjust the

effects of other explanatory variables on the response variable to obtain each explanatory variable’s own effect on the response
variable. But the values of partial regression coefficients depend on the absolute scale of each variable, so that those cannot show
the relative strength of effect on the response variable for each explanatory variable. For such comparison, the standardized partial
regression coefficients can be used. In Rgui console, type as follows, then you obtain the estimates as stb for the standardized
partial regression coefficients.

sdd <- c(0,sd(res$model$Height),sd(res$model$NW.Hnd))

stb <- coef(res)*sdd/sd(res$model$Wr.Hnd)

stb� �
The EZR does not provide this as a menu item, but you can do so by editing the commands in script window, selecting
lines and click [Submit].� �

10.2 Evaluation of the goodness of fit

It is always necessary to evaluate the goodness of fit of the regression model to the data.
After the least square estimation of a and b, we can define zi = a + bxi for each x. Then ei = yi − zi can be considered as

“residuals”. The residuals is the remaining part of the variance of yi, that could not be explained by the regression model. Thus, the
greater the residuals are, the worse the goodness of fit is. We would like to treat the both plus and minus residuals in its absolute
distance, so that we can define the sum of squared residuals, Q, as follows.

Q =
n∑

i=1

e2
i =

n∑
i=1

(yi − zi)2

=

n∑
i=1

y2
i − (

n∑
i=1

yi)2/n −
(n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi)2

n
n∑

i=1

x2
i − (

n∑
i=1

xi)2

/n

The sum of squared residuals Q is the scale to show badness of fit of the regression model. Q divided by n is called as residual
variance (we will denote it as var(e)).

Among the values of var(e) and the variance of y (var(y)) and Pearson’s product limit correlation coefficient r, the following
equation always stands.

var(e) = var(y)(1 − r2)
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Therefore,

r2 = 1 − var(e)
var(y)

Thus the closer to 1 r2 is, the goodness of fit is higher. In that meaning, r2 is called as “deterministic coefficient” or “the
attributable proportion of x”.

Since r2 becomes larger depending on the number of explanatory variables, usually the r2 will be adjusted for the degree of
freedom. That is, Adjusted R-Squared in the summary of results.

As another indicator for the goodness of fit, the AIC (Akaike information criterion) is sometimes used (particularly in multiple
regression models), which can be calculated in R, using the resulted object of linear model fitting (for example, res of the example
above). In Rgui console, type AIC(res), then you can get the AIC value. Here I don’t explain any more, but many online materials
and books can be found*27.

10.3 Points to be paid attention in fitting regression model

The target variables may be measurements including error. In such situation, it is not valid to assume one as response variable
and the other as explanatory variable. Generally speaking, if we can assume the direction of effect like the stature determining
weight and not vise versa, the regression is possible where the stature is explanatory variable and the weight is response variable.
However, when the explanatory variable includes measurement error, the explanatory power of the regression model become
worse. In addition, the regression models with opposite combination of response variable and explanatory variable do not match.
Thus, it is very important that the determination of which variable is response variable shoule be based on the direction of causal
relationship, with enough reference to previous studies and clinical/biological knowledge.

Another point to be noticed is extrapolation of regression model for prediction. Especially the extrapolation should be avoided
when you apply the working curve for prediction, because the linearity of the working curve is only confirmed within the range of
standard material concentrations. The increase of absorbance tends to be smaller in higher concentration ranges due to saturation
of molecules, the linearity is lost there. If you measure the samples with high concentration, you must dilute them into the ranges
of standard materials.

Exercise� �
A built-in dataset airquality includes the air quaility data in New York from May to September 1973. The variables are Ozone for ozone
gas concentration in ppb, Solar.R for solar radiation in lang, Wind for wind speed in mph, Temp for atomospheric temperature in degree
F, Month in number (5-9) and Day in number (1-31).
Let’s fit the regression model for this data with ozone gas concentration as response variable and solar radiation as explanatory variable.� �
In Rgui console, enter the following 4 lines.

plot(Ozone ~ Solar.R, data=airquality)

res <- lm(Ozone ~ Solar.R, data=airquality)

abline(res)

summary(res)� �
In EZR, at first, the airquality must be activated by select [File], [Read data set from an attached packages], then
double-click datasets in the left panel and double-click airquality in the right panel, then click [OK].
To draw scattergram, [Graphs], [Scatterplot], then select Solar.R as x-variable and Ozone as y-variable, then click
[OK]. You will get the scattergram with a regression line. To obtain the numerical result of regression model fitting,
select [Statistical analysis], [Continuous variables], [Linear regression], then select Ozone as Response variable and
Solar.R as Explanatory variables, and click [OK]. Then you will see the result in the Output window.� �
Both give the same results as follows.

*27 http://en.wikipedia.org/wiki/Akaike_information_criterion is the explanation in the Wikipedia.
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� �
Call:

lm(formula = Ozone ~ Solar.R, data = airquality)

Residuals:

Min 1Q Median 3Q Max

-48.292 -21.361 -8.864 16.373 119.136

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.59873 6.74790 2.756 0.006856 **

Solar.R 0.12717 0.03278 3.880 0.000179 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 31.33 on 109 degrees of freedom

(42 observations deleted due to missingness)

Multiple R-Squared: 0.1213,Adjusted R-squared: 0.1133

F-statistic: 15.05 on 1 and 109 DF, p-value: 0.0001793� �
The fitted regression model is Ozone = 18.599 + 0.127 · Solar.R, and the p-value shown in the bottom line is 0.0001793, as

the result of F-test. Therefore, the fitting of the model can be judged as significant. However, the Adjusted R-squared shown
above line is 0.11, which means only about 10% of the variance of the Ozone concentration can be explained by this model. We
should judge the model is not so good.

To improve fitting, it may be possible to add more variables (for example, Wind and/or Temp) as explanatory variables as
the multiple regression model. In Rgui console, you can easily do so by typing the next 3 lines. Then you see about 60% of
Adjusted R-Squared value.

mres <- lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)

summary(mres)

AIC(mres)� �
In EZR, select [Statistical analysis], [Continuous variables], [Linear regression], then select Ozone as “Response vari-
able” and simultaneously (with pressing [Ctrl] key) select Solar.R, Temp, and Wind as “Explanatory variables”, then
click [OK].� �

10.4 Analysis of Covariance (ANACOVA/ANCOVA)

When the same response variable and explanatory variables are investigated for some groups, we often want to check the
differences of the regression coefficients by the groups. In such case, the analysis of covariance is applicable.

Typical model is,
Y = β0 + β1C + β2X + β12C · X + ε

where C is binary variable and X and Y are numerical (continuous) variables. We would like to compare the means of Y between
the 2 categories of C, but considering the significant correlation between Y and X, to compare the adjusted means of Y between
the 2 categories of C, each adjusted for X, only when the slopes of linear regression of X on Y are not different. The adjusted mean
can be calculated as the sum of the coefficient of C and the mean of covariate X times its coefficient and the intercept.

As prerequisites, the regression models for both categories of C show good fits for the data. If the models poorly fit the data,
stratified analysis for each category of C may be recommended. The typical procedure is described below.

(1) Testing the null hypothesis of equal slopes Test H0 : β1 = β2 and H1 : β1 , β2. For each category group, calculate the
mean, variation, and covariation*28, the mean square error d1 under the alternative hypothesis H1 can be calculated as,

d1 = S S Y1 − (S S XY1)2/S S X1 + S S Y2 − (S S XY2)2/S S X2

*28 For the first group with sample size N1, denote the ith elements as xi and yi, then EX1 =
∑

xi/N1, S S X1 =
∑

(xi − EX1)2, EY1 =
∑

yi/N1, S S Y1 =∑
(yi − EY1)2, EXY1 =

∑
xiyi/N1, S S XY1 =

∑
(xiyi − EXY1)2. For the second group, the mean, variation and covariation can be caluculated similarly.
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and the mean square error d2 under the null hypothesis H0 can be calculated as,

d2 = S S Y1 + S S Y2 − (S S XY1 + S S XY2)2/(S S X1 + S S X2)

then we can obtain F = (d2 − d1)/(d1/(N − 4)), which obeys F-distribution with the 1st d.f. 1 and the second d.f. N − 4
under the null hypothesis H0.

(2) If equal slopes, testing the null hypothesis of equal intercept Based on β1 = β2, estimate the common slope β as,

β = (S S XY1 + S S XY2)/(S S X1 + S S X2)

then test H′0 : α1 = α2 and H′1 : α1 , α2. Under the null hypothesis H′0, calculate the mean square error d3 = S S Y −
(S S XY )2/S S X , then get F = (d3 − d2)/(d2/(N − 3)), which should obey the F-distribution with 1st d.f. 1 and 2nd d.f. N − 3.
When the H′0 is rejected, substitute the mean of each group by the actual value using the common slope, then we can get the
intercept of each group. If the H′0 is not rejected, usual linear regression should be applied to the pooled data.

(3) If significantly different slopes, stratified analysis Separately estimate β1 = S S XY1/S S X1 and β2 = S S XY2/S S X2, then α1

and α2 should also be estimated by each linear regression equation, with substituting the explanatory variable by its actual
mean.

Exercise� �
http://minato.sip21c.org/grad/sample3.dat is a text datafile delimited with tab, which includes variables for the name of prefec-
ture (PREF), the region whether East or West (REGION), the number of cars per 100 households in 1990 (CAR1990), the number of deaths
by traffic accident per 100,000 population in 1989 (TA1989), the proportion (in %) of dwellers in densely inhabited area according to 1985
national census (DIDP1985).
For this data, examine the difference between East and West of TA1989, adjusting the effect of CAR1990, using ANACOVAa.

a Note: There is no significant difference of the number of deaths by traffic accident between East and West Japan, without adjustment for car holding.� �
In Rgui console, type as follows.

sample3 <- read.delim("http://minato.sip21c.org/grad/sample3.dat")

plot(TA1989 ~ CAR1990, pch=as.integer(REGION), data=sample3,

xlab="Number of cars per 100 households", ylab="Deaths by traffic accident per 100,000")

east <- subset(sample3,REGION=="East")

regeast <- lm(TA1989 ~ CAR1990, data=east)

summary(regeast)

west <- subset(sample3,REGION=="West")

regwest <- lm(TA1989 ~ CAR1990, data=west)

summary(regwest)

abline(regeast,lty=1)

abline(regwest,lty=2)

legend("bottomright",pch=1:2,lty=1:2,legend=c("East Japan","West Japan"))

summary(lm(TA1989 ~ REGION*CAR1990, data=sample3))

anacova <- lm(TA1989 ~ REGION+CAR1990, data=sample3)

summary(anacova)

cfs <- dummy.coef(anacova)

cfs[[1]] + cfs$CAR1990 * mean(sample3$CAR1990) + cfs$REGION
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The p-value for the null hypothesis that the coefficient of REGION in the last model is not different from zero was 0.0319. There
proved to be a significant difference of TA1989, adjusted for CAR1990, between East and West. Adjusted means for regions is
obtained as follows.

East West

9.44460 10.96650� �
In EZR, at first, the sample3 must be read from internet, select [File], [Import Data], [Read Text Data From
File, Clipboard, or URL], then type sample3 in the box of “Enter name for data set:”, check the ratio button
beside “Internet URL”, and check the radio button beside [Tabs] of “Field Separator” and click [OK], then type
http://minato.sip21c.org/grad/sample3.dat as Internet URL and click [OK].
Then, all you need are to select [Statistical analysis], [Continuous variables], [ANCOVA], and to set TA1989 as “Re-
sponse Variable”, REGION as “Grouping variables”, CAR1990 as “Numeric variable for adjustment”, then to click [OK]
Then you will see the graph and the result in the Output window.� �
P value for interaction between grouping variable and covariate is 0.99� �

The statement above means no difference of the slopes in East and West.
In the “Anova Table (Type III tests)” of Output Window, the p-value in the line of factor(REGION) is 0.03194, which
means statistically significant difference between the adjusted means. But adjuted means itself can only be obtained
by the commands written above.� �

10.5 Logistic regression analysis

The logistic regression is a kind of fitting the regression model to the binary data. The reponse variable is not continuous but
binary, and obeys the binary distribution. Therefore in Rgui console, we use glm() instead of lm().

The logistic regression model fitting is often used in medical statistics. For example, let the response variable whether having
disease or not and let the explanatory variables whether having risk factors or not with some confoundings like age, applying the
logistic regression model will lead to calculate the odds ratio for each risk factor with controlling the effects of other risk factors
and confoundings simultaneously.

Usually whether having disease or not is expressed as 1 or 0, as binary variable. The data mean the prevalence proportion, how
much proportion of the total have disease. Therefore, the left term of the logistic regression equation ranges within 0 and 1, but the
right terms of the equation are composed of several categorical variables with (sometimes numeric) confoundings, and thus ranges
over all real values from minus infinity to infinity. Therefore, in the logistic regression, the left term is transformed by the logit
transformation (taking natural logarithm of the ratio of itself to 1 minus itself).

Thus, let the prevalence proportion of the disease P, the logistic regression model is,

ln(P/(1 − P)) = b0 + b1X1 + ...bkXk

If X1 is the binary variable meaning whether having a risk factor or not, and X2, ...Xk are confoundings, subtracting the case of

32



X1 = 0 from the case of X1 = 1,

b1 = ln(P1/(1 − P1)) − ln(P0/(1 − P0)) = ln(P1 ∗ (1 − P0)/(P0 ∗ (1 − P1)))

Thus, b1 means the logarithm of the odds ratio controlling all other variables. Assuming the log-odds ratio to obey the normal
distribution, the 95% confidence intervals of the odds ratio can be obtained by the following formula.

exp(b1 ± 1.96 × SE(b1))

Exercise� �
The builit-in dataset birthwt included in the library(MASS) is the record of 189 births at Baystate Medical Center in Springfield, for the
relationship between low birth weight and its risk factors. Included variables are listed below. Apply the logistic regression analysis where
the response variable is low, which means whether the baby’s weight at birth is less than 2.5 kg or not.
low A binary variable for low birth weight (1, when birth weight is less than 2.5 kg, 0 otherwise)
age Mother’s age at birth in years
lwt Mother’s weight (in poundsa) at last menstrual period
race Mother’s race (1 = white, 2 = black, 3 = other)
smoke Smoking status during pregnancy (1, when smoked)
ptl Number of previous premature labours (Note: This means preterm births!!)
ht History of hypertension (1, when experienced)
ui Presence of uterine irritability (1, present)
ftv Number of physician visits during the first trimester
bwt Baby’s birth weight in grams

a Abbreviated as lbs, where 1 lb. = 0.454 kg.� �
The data include many variables, and the logistic regression analysis should use the target risk factor variables with all possible

confouding factors as explanatory variables. Any variable having correlation with both of response variable and explanatory
variable may be a confounding factor.

Here the response variable is low and we assume that, based on the detailed analysis and consideration, explanatory variables
should be race, smoke, ht, ui, lwt, and ptl. Before using them as explanatory variables, we must transform the type of variable,
except for truely numeric lwt and ptl, from numeric into factor. The response variable also must be transformed from numeric
into factor.

In Rgui console, we can do so by typing as follows.

library(MASS)

data(birthwt)

birthwt$clow <- factor(birthwt$low, labels=c("NBW","LBW"))

birthwt$crace <- factor(birthwt$race, labels=c("white","black","others"))

birthwt$csmoke <- factor(birthwt$smoke, labels=c("nonsmoke","smoke"))

birthwt$cht <- factor(birthwt$ht, labels=c("normotensive","hypertensive"))

birthwt$cui <- factor(birthwt$ui, labels=c("uterine.OK","uterine.irrit"))� �
In EZR, select [File], [Read data set from an attached package], then double-click MASS in the left panel and double-
click birthwt in the right panel, then click [OK].
Then select [Active data set], [Variables], [Convert numeric variables to factors], then simultaneously (with pressing
[Ctrl] key) select ht, low, race, smoke and ui, type c into the box besides “New variable name or prefix for multiple
variables:”, set the radio-button of “Factor Levels” to “Supply level names”, then click [OK]. Type corresponding level
names, such as normotensive for level 0 and hypertensive for level 1, for each dialogue.� �
Fitting the logistic regression model to this data can be done by typing as follows in Rgui console.

res <- glm(clow ~ crace+csmoke+cht+cui+lwt+ptl, family=binomial(logit), data=birthwt)

summary(res)

If you evaluate how the model explains the data, Nagelkerke’s R-square can be used, instead of adjusted R-squares in the case
of multiple linear regression model, as follows.
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require(fmsb)

NagelkerkeR2(res)

The result is obtained as shown in the box below.� �
Call:

glm(formula = clow ~ crace + csmoke + cht + cui + lwt + ptl,

family = binomial(logit), data = birthwt)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9049 -0.8124 -0.5241 0.9483 2.1812

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.086550 0.951760 -0.091 0.92754

craceblack 1.325719 0.522243 2.539 0.01113 *

craceothers 0.897078 0.433881 2.068 0.03868 *

csmokesmoke 0.938727 0.398717 2.354 0.01855 *

chthypertensive 1.855042 0.695118 2.669 0.00762 **

cuiuterine.irrit 0.785698 0.456441 1.721 0.08519 .

lwt -0.015905 0.006855 -2.320 0.02033 *

ptl 0.503215 0.341231 1.475 0.14029

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 234.67 on 188 degrees of freedom

Residual deviance: 201.99 on 181 degrees of freedom

AIC: 217.99

Number of Fisher Scoring iterations: 4� �
From this output, the result is usually summarized as the table shown below. Like this, continuous variables are usually described

as “included in the model as covariates”, but sometimes included in the table with odds ratio. The estimated coefficients in the
output are log odds ratios, so that it is usually transformed to odds ratios by taking exponential with 95% confidence intervals. This
procedure is not supported in Rcmdr, so you need to type the followings in the Rgui console, if the name of the model is GLM.1.

exp(coef(GLM.1))

exp(confint(GLM.1))

Table. The result of logistic regression analysis for the risk factors of low birth weight babys at Baystate Medical Center.
95% confidence intervals

Explanatory variables∗ Odds Ratio Lower limit Upper limit p-value
Race (White)
Black 3.765 1.355 10.68 0.011
Other colored 2.452 1.062 5.878 0.039
Smoke (No smoke) 2.557 1.185 5.710 0.019
Hypertensive (Normotensive) 6.392 1.693 27.3 0.008
Uterine irritability (Normal uterine) 2.194 0.888 5.388 0.085

AIC: 217.99，Dnull: 234.67 (d.f. 188), D: 201.99 (d.f. 181)
∗ Referene category is shown in parenthesis. The logistic regression model includes mother’s weight at the last menstruation and

number of previous preterm births as covariates.
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� �
To conduct the logistic regression analysis by EZR, select [Statistical analysis], [Discrete variables], [Logistic regres-
sion], and set then put the cursor at the box of “Objective variable” and click clow or type clow there, and type at the
box of “Explanatory variables” as crace+csmoke+cht+cui+lwt+ptl (or click variables and mathematical symbols),
then click [OK]. The Nagelkerke’s R square is not given in EZR.� �
The results are automatically given as odds ratios with 95% confidence intervals and p.values as shown below.� �
odds ratio Lower 95%CI Upper 95%CI p.value

(Intercept) 0.917 0.142 5.920 0.92800

crace[T.black] 3.760 1.350 10.500 0.01110

crace[T.others] 2.450 1.050 5.740 0.03870

csmoke[T.smoke] 2.560 1.170 5.590 0.01860

cht[T.hypertensive] 6.390 1.640 25.000 0.00762

cui[T.uterineIrrit] 2.190 0.897 5.370 0.08520

lwt 0.984 0.971 0.998 0.02030

ptl 1.650 0.847 3.230 0.14000� �
11 Contingency tables for independence hypothesis

How can we examine the relationship between categorical variables? Of course, the logistic regression model can also be
applied to the relationship between the 2 categorical variables. In addition, as well as Pearson’s correlation coefficient for 2
numeric variables, there are many indices to show the strength of relationship for 2 categorical variables: For example, the phi
coefficient (usually written as ρ) is the same calculation with the Pearson’s correlation coefficient where the values are expressed as
0 or 1 (0 means “not having” and 1 means “having” for each of cause and disease). Denote the proportion of having cause among
patients as θ1, and the proportion of having cause among healthy controls as θ2, then

ρ =
√

(π1 − π2)(θ1 − θ2)

As another way to show the strength of relationships, in many epidemiologic studies, taking the ratios or differences between
the incidence rates, risks or odds for the exposed (or having causes) group and nonexposed group. The more apart from 1 the ratio
is or the more apart from 0 the difference is, the strength of relationship is stronger. For example, incidence rate ratio and odds
ratio (the same mean as in the case of logistic regression, but here ignoring the effect of other variable) are frequently calculated in
epidemiologic studies. In this practical lesson, we do not treat these ratios or differences for the shortness of time. I recommend
you to read the textbook of epidemiology written by Kenneth J. Rothman “Epidemiology: An Introduction”, Oxford Univ. Press,
2002. And, such epidemiologic analysis can be conducted using the additional packages like epitools, vcd, and Epi in CRAN.

Here we do the test for independence of 2 categorical variables, where the null hypothesis is that those 2 categorical variables
are independent.

Statistical information of categorical variable is the frequencies of each category. Therefore, the relationship between the 2
categorical variables can be checked by making a 2 dimentional contingency table. In Rgui console, table() function can be
used to make contingency table. Usually it is called as cross table*29. As we have already seen, the test of proportions by normal
approximation is mathematically equivalent to the test of chi-square test of contingency table, but the detailed explanation will be
given below.

11.1 Chi-square test for independence

Concerning the test for independence, chi-suqare test is the most popular. That is, a kind of “goodness of fit” test. The null
hypothesis is that the two categorical variables has no correlation (in other words, the two variables are independent). Actually,
the procedure is (1) calculate expected numbers of each combination if 2 variables are independent, (2) for each combination,
calculate the difference of obserbed number and expected number, square it, divide it by the expected number, (3) sum up them to
calculate the chi-square statistic, which obeys chi-square distribution with d.f. 1, (4) if the chi-square statistic is greater than 3.84

*29 Especially the two categorical variables are both binary variable, the table is called as “2 by 2 cross tabulation” (2 by 2 contingency table), and its statistical
property is well described in many textbook.
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(95% point of chi-square distribution with d.f. 1), we can conclude that the difference between observation and expectation under
independent hypothesis is significantly larger than zero, thus the null hypothesis can be rejected at 5% significance level.

A Ā
B a b
B̄ c d

If the values which can be taken by 2 categorical variable A and B are limited to “having” and “not having”, the combination of
these 2 variables are only 4 cases as “having both A and B (A ∩ B)”, “not having A but having B”, “having A but not having B”
and “not having A nor B”. When the numbers of all those combinations are summarized as the table shown above, the probability
structure of the population can be written as the next table.

A Ā
B π11 π12
B̄ π21 π22

If this table is given, expected numbers of all combinations can be summarized as the next table, where N = a + b + c + d.

A Ā
B Nπ11 Nπ12
B̄ Nπ21 Nπ22

From the two tables (observed and expexted numbers of all combinations), χ2 statistic can be calculated by the formula:

χ2 =
(a − Nπ11)2

Nπ11
+

(b − Nπ12)2

Nπ12
+

(c − Nπ21)2

Nπ21
+

(d − Nπ22)2

Nπ22

Then the χ2 statistic can be statistically tested using chi-square distribution with d.f. 3. However, usually π11, π12, π21, π22 are
unknown.

Assuming that Pr(Ā) = 1−Pr(A) and Pr(A∩B) = Pr(A)Pr(B) under the null hypothesis*30, we can estimate 2 parameters Pr(A)
and Pr(B)*31.

The point estimate of Pr(A) is naturally proved to be (a + c)/N, because it can be considered as the proportion of “having” A,
ignoring B. Similarly, the point estimate of Pr(B) is of course (a + b)/N. Based on these, πs can be obtained as follows.

π11 = Pr(A ∩ B) = Pr(A)Pr(B) = (a + c)(a + b)/(N2)

π12 = (b + d)(a + b)/(N2)

π21 = (a + c)(c + d)/(N2)

π22 = (b + d)(c + d)/(N2)

Using these values, the χ2 statistic can be obtained from the following equation.

χ2 =
{a − (a + c)(a + b)/N}2
{(a + c)(a + b)/N} +

{b − (b + d)(a + b)/N}2
{(b + d)(a + b)/N} +

{c − (a + c)(c + d)/N}2
{(a + c)(c + d)/N} +

{d − (b + d)(c + d)/N}2
{(b + d)(c + d)/N}

=
(ad − bc)2 {(b + d)(c + d) + (a + c)(c + d) + (b + d)(a + b) + (a + c)(a + b)}

(a + c)(b + d)(a + b)(c + d)N

The in-between terms of { and } in the numerator is N2, so that the above equation can be simplified as the following equation.

χ2 =
N(ad − bc)2

(a + c)(b + d)(a + b)(c + d)

*30 This null hypothesis means that the numbers of individuals in each combination are proportionate to the distribution of sums of “having” A and “not having”
A separately for “having” B and “not having” B. Therefore, this test is mathematically equivalent with the test of the differences of proportions where the
null hypothesis is that the “having” A proportion in “having” B equals to that in “not having” B.

*31 Here Pr(X) denotes the probability of “having” X. In addition, here we estimate the 2 parameters Pr(A) and Pr(B) from data, the degree of freedom for the
chi-square distribution in which the obtained chi-square statistic obeys to is 1, which is 3 − 2.
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However, this equation is usually slightly modified by Yates’ continuity correction. The reason of this correction is that the
approximation of chi-square distribution can be improved by adding or subtracting 0.5 from the actual frequencies of each combi-
nation. Then the following equation is obtained.

χc
2 =

N(|ad − bc| − N/2)2

(a + c)(b + d)(a + b)(c + d)

The χc
2 obeys the chi-square distribution with d.f. 1. To note, when |ad−bc| is less than N/2, Yates’ continuity correction doesn’t

make sense, so that usually let χ2 zero. Nonetheless, R’s chisq.test() function applys the correction even if |ad − bc| < N/2,
because the R development core team take the position of Yates’ original article. FYI, prop.test() doesn’t take this position and
χ2 = 0 when |ad − bc| < N/2.

Cross-tabulation in Rgui console can be done by table() or xtabs() function. The resulted object is a matrix object with
table class. If the resulted matrix is known, it can be directly given as a matrix object. For example, when a=12, b=8, c=9, and
d=10, you can define the matrix object x and conduct chi-square test as follows.

x <- matrix(c(12,9,8,10), 2, 2)

# x <- matrix(c(12,8,9,10), 2, 2, byrow=TRUE) is also possible.

chisq.test(x)� �
In EZR, select [Statistical analysis], [Discrete variables], [Enter and analyze two-way table], then directly enter the
frequencies into the corresponding cells and check the box beside “Chi-square test with continuity correction” on, then
click [OK] (In EZR, there is no way to obtain the result of chi-square test without continuity correction). The result of
chi-square test will be shown in the Output Window.� �
Exercise� �

For 100 lung cancer patients, select 100 healthy controls with same age and sex one by one (such controls are called as pair-match samplinga.
For each group, the result of asking smoking habits, 80 among 100 patients and 55 among 100 controls had experience of smoking.
Test the null-hypothesis that lung cancer has no relationship with smoking, using chi-square test.

a Caution: Use of pair-match sampling in such case-control study may impair the representativeness of controls from general population.� �
In other words, the null-hypothesis is that suffering from lung cancer is independent from past smoking habits. The 2 by 2

contingency table is shown below.

Lung cancer patients Healthy controls Total
Past smoker 80 55 135
Never smoked 20 45 65
Total 100 100 200

Under the null-hypothesis that lung cancer is not related with smoking, expected numbers of each combinations can be calculated
as follows.

With lung cancer Without lung cancer
Smoking 135 × 100/200 = 67.5 135 × 100/200 = 67.5
Nonsmoking 65 × 100/200 = 32.5 65 × 100/200 = 32.5

Therefore, the chi-square value with Yates’ continuity correction is obtained as follows.

χc
2 = (80 − 68)2/67.5 + (55 − 67)2/67.5 + (20 − 32)2/32.5 + (45 − 33)2/32.5 = 13.128...

Type 1-pchisq(13.128,1), then [1] 0.00029... is shown as the significant probability of chi-square test. Thus the null-
hypothesis is rejected at the significance level of 5%. Consequently the association between lung cancer and smoking was statisti-
cally significant.

In Rgui console, the above result can be easily obtained by typing the one line below.

chisq.test(matrix(c(80,20,55,45),2,2))

Exercise� �
Test the null-hypothesis that sex (Sex) is independent from writing hand (W.Hnd) for the survey data in MASS library.� �
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In Rgui console, type as follows.

require(MASS)

chisq.test(xtabs(~ Sex+W.Hnd, data=survey))

The p-value will be obtained as 0.6274, which means no significant association existing between sex and writing hand.� �
In EZR, after activating survey data set, select [Statistical analysis], [Discrete variables], [Create two-way table and
compare two proportions (Fisher’s exact test)], then select Sex as “Row variable”a and W.Hnd as “Column variable”,
and check the box beside “Chi-square test” on, set the radio-button under “Continuity correction of chi-square test”
No, then click [OK]. The result shown in the Output Window as X-squared = 0.5435, df = 1, p-value = 0.461,
which is without Yates’ continuity correction. If you set the radio-button Yes, you can get 0.6274 as p-value.

a It is misspelled as “Raw variable”.� �
11.2 Fisher’s exact test

When you find very low expected number of any combination, normal approximation in chi-square test is very bad. In such
case, re-categorizing may decrease types of combinations and increase the expected numbers of each combination, but much better
solution is provided as Fisher’s exact probability (test).

For a given two-way table, if we can fix the marginal frequencies of the two-way tables (in other words, the proportions of
each category are fixed for each variable), it is possible to calculate the probabilities (obeying hypergeometric distribution) of
eventually obtaining the combination for all possible tables. Then, the sum of the probabilities equal to or lower than the given
table’s probability means the eventually obtaining such table under the null-hypothesis that there is no relationship between the
two variables. The probability calculated in this manner is called as Fisher’s exact probability. This is not approximation, so that
the small number of samples and very low expected number of combinations are not the problem.

The method can be formulated as follows*32. Let’s assume the finite population with size N, whose data of two variables A and
B are given. Among N individuals, let’s denote the number of the individuals whose data of variable A is 1 as m1 and m2 = N −m1.
In the situation that n1 is the number of the individuals whose data of variable B is 1 (of course, n2 = N − n1), and let a be the
number of individuals whose data for both variable A and B are 1. We can calculate the probability that a exactly equals the number
of the individuals whose data of variable A is 1 among n1.

This probability pa is the products of the number of combinations to extract a from m1 and the number of combinations to extract
n1 − a from m2, divided by the number of combinations to extract n1 from N. Therefore, the probability that the null-hypothesis “A
and B are independent” can stand is the summation of all the probabilities that are equal to or smaller than pa among all possible
tables.

The extracting process is sampling from finite population without replacement, so that the mean E(a) and the variance V(a) can
be given by the following equations.

E(a) = n1m1/N

V(a) = {(N − n1)/(N − 1)}n1(m1/N)(m2/N) = (m1m2n1n2)/{N2(N − 1)}

Actually this calculation requires so enourmous computation that the statistical software will do it. To note, the probabilities for
possible tables will be the same for two different tables and it is difficult to judge whether the both probabilities should be included
in the summation or not.

Nonetheless, Fisher’s exact probability test does not use any approximation and using computer software enables you to apply
this test for any (even large-sized) two-way tables. Thus, usually Fisher’s exact probability test is recommended to use than use of
chi-square test.

In Rgui console, it is easy to apply Fisher’s exact test instead of chi-square test. Simply replace chisq.test() by
fisher.test().

*32 Here the explanation is given for 2 by 2 table, but it is applicable for any two-way table.
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Exercise� �
For the survey data set, calculate the Fisher’s exact probability for the actual or less probable combination of sex (Sex) and smoking habit
(Smoke) when those are independent.� �
In Rgui console, the needed typing is as follows.

require(MASS)

fisher.test(xtabs(~Sex+Smoke, data=survey))� �
In EZR, Fisher’s exact test can be simultaneously done with the chi-square test in [Create two-way table and compare
two proportions (Fisher’s exact test)] menu.� �
Both will give the same result of p-value = 0.3105. The null-hypothesis cannot be rejected at 5% significance level. Thus

we cannot say the siginificant association between sex and smoking habit.

12 Contingency tables for repeated measures or other paired measurements

For ordered or categorical indices, the data for the same individuals at 2 different times can be summarized as the 2 dimensional
cross table, and the table can be used to evaluate the test-retest reliability. However, neither of chi-square test nor Fisher’s exact
probability test is appropriate for this purpose, because the variables at 2 different times are clearly not independent. The situation
is similar when the same subjects are evaluated by two different raters and it should be judged whether the inter-rater agreement is
significantly more than “by chance” or not.

If you would like to know the match of 2 measurements, the Kappa statistic can be used, where the null hypothesis is that the
match of 2 measurements is same as random match and the alternative hypothesis is that the 2 measurements are significantly more
matching than random.

If you would like to know the effect of intervention, the null-hypothesis is same as the Kappa statistic, but the alternative
hypothesis is that the 2 measurements are more different than random match. In such case, the McNemar test can be applied.
If the variable is ordered and number of categories is more than 3, Wilcox’s signed rank test is also applicable.

12.1 Kappa statistic

Assume the next table for the evaluation of test-retest reliability.

2nd time
Yes No

1st time Yes a b
1st time No c d

If the results at 2 times completely agreed, b = c = 0, but usually b , 0 and/or c , 0. Here we can define the agreement
probability Po = (a + d)/(a + b + c + d). When complete agreement, from b = c = 0, Po = (a + d)/(a + d) = 1. When complete
disagreement, oppositely, from a = d = 0, Po = 0. If the extent of agreement is same as random combination, the expected
agreement probability Pe can be calculated as follows: Pe = {(a+c)(a+b)/(a+b+c+d)+(b+d)(c+d)/(a+b+c+d)}/(a+b+c+d).

If we define κ as κ = (Po − Pe)/(1 − Pe), κ = 1 at complete agreement, κ = 0 at the same agreement with random, and κ < 0 at
more disagreement than random. Using that the variance of κ, V(κ), is V(κ) = Pe/{(a + b + c + d) × (1 − Pe)}, we can calculate
κ/
√

V(κ), which obeys the standard normal distribution. Then we can test the null-hypothesis κ = 0 and estimate 95% confidence
intervals of κ.

The additional package vcd provides the function Kappa() to calculate κ, and applying confint() function gives the confi-
dence intervals. In addition, the author wrote the function to calculate κ, Kappa.test, which is included in the fmsb package.
Unfortunately, Rcmdr cannot calculate κ right now.

Let’s consider the numeric example. Assume the table below.

2nd time
Yes No

1st time Yes 12 4
1st time No 2 10

In Rgui console, after the installation of fmsb library, type as follows then you get the all results in the box below.
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require(fmsb)

Kappa.test(matrix(c(12,2,4,10),2,2))� �
$Result

Estimate Cohen’s kappa statistics and test the null

hypothesis that the extent of agreement is same as random

(kappa=0)

data: matrix(c(12, 2, 4, 10), 2, 2)

Z = 3.0237, p-value = 0.001248

95 percent confidence interval:

0.2674605 0.8753967

sample estimates:

[1] 0.5714286

$Judgement

[1] "Moderate agreement"� �
Here the judgement is due to the criteria given by Landis JR, Koch GG (1977) Biometrics, 33: 159-174: If κ is less than 0,
"No agreement", if 0-0.2, "Slignt agreement", if 0.2-0.4, "Fair agreement", if 0.4-0.6, "Moderate agreement", if 0.6-
0.8, "Substantial agreement", if 0.8-1.0, "Almost perfect agreement". This is only a rough guideline, but is practically
useful.� �

In EZR, select [Statistical analysis], [diagnostic accuracy], [Kappa statistics for agreement of two tests], and directly
enter the numbers into corresponding cells, then click [OK]. EZR uses epi.kappa function of epiR package, which
gives slightly different results of p-value and confidence intervals from Kappa.test of fmsb package (due to the use of
different approximation), but the estimate of kappa statistics is exactly same.� �

12.2 McNemar test

The original form of McNemar test is developed for 2 by 2 cross table. Assume the next table as the resulted numbers of
individuals.

after
Yes No

before Yes a b
before No c d

The McNemar test calculates the χ2
0 defined below. The χ2

0 obeys the chi-square distribution of degree of freedom 1, under the
null-hypothesis.

χ2
0 =

(b − c)2

(b + c)

If the continuity correction is applied (however, if b equals c, χ2
0 = 0), as follows.

χ2
0 =

(|b − c| − 1)2

(b + c)

The extended McNemar test can be applied to M by M cross table. Let the number of individuals in cell [i,j] be ni j (here i, j =
1, 2, ..., M). Calculate χ2

0 as follows, then the χ2
0 obeys chi-square distribution with degree of freedom being M(M-1)/2, under the

null hypothesis that the probabilities of being classified into cells [i,j] and [j,i] are the same.

χ2
0 =

∑
i< j

(
ni j − n ji

)2
(ni j + n ji)

In Rgui console, the McNemar test can be done by simply typing mcnemar.test(TABLE), where the TABLE is the contingency
table between corresponding 2 variables.
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� �
In EZR, McNemar test can be done by selecting [Statistical analysis], [Discrete variables], [Compare proportions of
two paired samples (McNemar test)]. Specify one row variablea and one column variable, then click [OK].

a Caution! It is misspelled as “Raw variable” in EZR version 1.0.� �
13 Survival Analysis

Fully explaining survival analysis is difficult within this introductory class, but many functions to conduct survival analysis are
provided by survival package.

13.1 Concept of survival analysis

In longitudinal observation of the effects by toxic substances, not only the changes of quantitative indices but also the time to
event such as death could be used to evaluate the strength of the toxicity of that substances. The data like time to event can be
analyzed by survival analysis (a.k.a. event history analysis).

Amongst one of the most famous methods is the Kaplan-Meier’s product-limit estimate, which is the products of (1 − number
of events divided by population at risk) at all times of occurences of events. The time when this value goes across 0.5 is median
survival time. For the data of time to events for 2 groups, the logrank test or generalized Wilcoxon test can be used to test
the difference between the 2 groups. Besides those nonparametric methods, there are parametric approaches to fit the time to
events with any known distribution, like exponential distribution or Welbull distribution. The famous semi-parametric approach of
survival analysis is the Cox’s regression (a.k.a. fitting a proportional hazard model), which assume that the ith individual’s hazard
can be expressed as the product of the baseline hazard and exp (

∑
βzi), where zi is the ith value of covariate vector z and β is

coefficient’s vector.
After typing require(survival) or library(survival), Surv() generates the survival time object, survfit() will cal-

culate the Kaplan-Meier’s product-limit estimate (this result can also be used to draw survival curves), survdiff() will conduct
the logrank test, and coxph() fit the proportional hazard model to the data. If you want to know the survival analysis in detail, you
should read another text like Bull et al., 1997.

13.2 Kaplan-Meier method

Let the times of event happening since beginning of time at risk t1, t2, ..., the numbers of events at each time d1, d2, ..., and the size
of population at risk just before the each time n1, n2, .... The size of population at risk decreases not only by the event occurrence
but also by censoring such as moving out or loss to follow up or death by competing risks. When the censoring and event occurred
at the same time, usually the censoring occurred just after the event happening.

Here the Kaplan-Meier’s product-limit estimates Ŝ (t) can be defined as follows.

Ŝ (t) = (1 − d1/n1)(1 − d2/n2)... =
∏
i<t

(1 − di/ni)

Clearly this value means the probability of survival and is numerically 1 at first (nobody has experienced the event) and 0 in the
end (after the everybody experienced the event).

The standard error of Ŝ (t) is given by the Greenwood’s formula shown below.

var(Ŝ ) = Ŝ 2 ×
∑
i<t

di

ni(ni − di)

Estimated Ŝ (t) is usually plotted as survival curve with 95% confidence intervals*33.
In Rgui console, basic grammer for Kaplan-Meier method is shown below (with comments). After loading survival pack-

age in memory by typing library(survival) or require(survival), dat <- Surv(times, flags) generates the
survival time data dat, where the flags for censoring become 1 when the observation ends by event’s occurrence and be-
come 0 when the observation ends by censoring. Conducting Kaplan-Meier method is simply res <- survfit(dat~1), or
res <- survfit(dat~group) if you want to estimate this by group. By typing plot(res), we can get the graph of survival
curves. Detailed result of estimation can be obtained by summary(res).

*33 However, if Ŝ (t)s were estimated for 2 groups and drawing both to compare them, confidence intervals are not usually drawn.
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practice� �
The aml data.frame in the survival package is the result of randomized controlled trial for the maintenance chemotherapy’s effect to delay
the remission of acute myelogenous leukemia. Included variables are the following 3.
time time to remission or censoring in weeks.
status flag for censoring, where 0 means censoring, 1 means remission.
x whether maintenance chemotherapy was conducted or not (Maintained or Nonmaintained).
Let’s conduct Kaplan-Meier’s method to estimate survival curves for the 2 groups (under maintenance chemotherapy or not). How long the
median survival times (here, median times to remission) of the 2 groups are?� �
In Rgui console, type as follows.

require(survival)

print(res <- survfit(Surv(time, status)~x, data=aml))

plot(res, xlab="(Weeks)", lty=1:2, main="Periods until remission of acute myelogenous leukemia")

legend("right", lty=1:2, legend=levels(aml$x))

The second line conducts Kaplan-Meier estimation and shows result below.� �
records n.max n.start events median 0.95LCL 0.95UCL

x=Maintained 11 11 11 7 31 18 NA

x=Nonmaintained 12 12 12 11 23 8 NA� �
The number of maintained patients is 11 and non-maintained patients is 12. Among them, remission cases were 7 and 11,

respectively. Median periods until remission were 31 weeks for maintained patients and 23 weeks for non-maintained patients.
Lower limits of 95% confidence intervals of the median periods until remission were 18 weeks and 8 weeks, respectively. Upper
limits of those were both infinity. The third line draws survival curves as solid line and dashed line for maintained group and
non-maintained group, respectively. The fourth line adds a legend to the graph.� �

In EZR, read the aml data set in survival package. Select [File], [Read data set from an attached packages], then
double-click survival in the top-left box, subsequently double-click leukemia in the top-right box (Actually aml and
leukemia are the same, but the former will not appear in this box). After that, click [OK].
Kaplan-Meier estimate will be done by select [Statistical analysis], [Survival analysis], [Kaplan-Meier survival curve
and logrank test], then select [time] as “Time-to-event variable”, select [status] as “Status indicator”. As the “Grouping
variable”, [x] should be selected if you would like to do Kaplan-Meier estimate separately for maintained group and
non-maintained group, otherwise leave there unselected.
This menu can draw the survival curve with confidence intervals by checking the box on. After setting all options,
click [OK].� �

13.3 Logrank test

Here I will give a brief explanation about the concept of logrank test. Let’s imagine 8 rats and randomly assign 2 groups
(administering toxic substance A and B) to them, then follow them up. On the day 4, 6, 8, 9, the rats in the first group (which took
toxic substance A) died. On the day 5, 7, 12, 14, the rats in the second group (which took toxic substance B) died. There is no
censoring.

The concept of logrank test is, making 2 by 2 contingency tables of group and alive/dead at each time of event, and calculate the
common chi-square value in a Cochran-Mantel-Haentzel’s manner.

In the example shown above, let’s denote expected number of death for jth group at the ith time of events as ei j, observed total
number of death at time i as di, population at risk of jth group at time i as ni j, total population at risk at time i as ni, then

ei j = di · · · ni j/ni

In the above example, e11 = 1 · · · 4/8 = 0.5. Next, denote the number of death of jth group at time i as di j, the weight of time i

as wi, the score of jth group at time i as ui j, then
ui j = wi · · · (di j − ei j)

In the logrank test, every weights are 1. Then
ui j = di j − ei j
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The summary score for group j, u j can be calculated as follows.

u j =
∑

i

di j − ei j

The variance V of the score can be considered as follows.

V = V j j =
∑

i

(ni − ni j)ni j · · · di(ni − di)
ni

2(ni − 1)

The chi-square value χ0
2, which obeys chi-square distribution of degree of freesom 1, is given by the formula below.

χ0
2 = u1

2/V

In the above example, u1 = (1− 4/8)+ (0− 3/7)+ (1− 3/6)+ (0− 2/5)+ (1− 2/4)+ (1− 1/3)+ (0− 0/2)+ (0− 0/1) = 1.338...
and V = 1.568..., then χ0

2 = 1.3382/1.568 = 1.14. Because 1.14 is much smaller than 3.84, which is 95% point of chi-square
distribution with degree of freedom 1, we cannot judge that there is significant difference between the two groups.

In Rgui console, the script conducting this is very simple as follows.

require(survival)

time <- c(4,6,8,9,5,7,12,14)

event <- rep(1,8)

group <- c(1,1,1,1,2,2,2,2)

survdiff(Surv(time,event) ~ group)

In the case of aml dataset in survival package, the script will be as follows.

require(survival)

survdiff(Surv(time, status) ~ x, data=aml)

The resulting p value is 0.0653, which means not significant difference between the maintained group and non-maintained group
at the significance level of 5%.� �

In EZR, logrank test of the null-hypothesis that remission time are not different between maintained and nonmain-
tained groups is simultaneously conducted with the Kaplan-Meier estimate as already explained.
Note: you can calculate the generalized Wilcoxon test in a manner of Peto-Peto instead of logrank test, by setting the
radio-button to do so.� �

13.4 Cox regression

The Kaplan-Meier estimate and logrank test assume no specific distribution in the population, thus nonparametric method.
Cox regression assumes that the individuals’ hazards are “proportional” to the common baseline hazard. In that sense, it’s semi-
parametric method.

The basic idea of the Cox regression is: Denote the covariates’ vectors affecting the occurrence of events as zi = (zi1, zi2, ..., zip)
for ith individual. Denote the instantaneous rate of the event occurrence for this individual at time t as h(zi, t). This is called as
“hazard function”. Cox regression assumes the following formula.

h(zi, t) = h0(t) · exp(β1zi1 + β2zi2 + ... + βpzip)

where h0(t) is the common baseline hazard, which is the instantaneous rate of event occurrence at time t of “base individual”, who
has no effect on event occurrence by all covariates. Unknown parameters β1, β2, ..., βp should be estimated. The effect of covariates
on event occurrence is the proportional coefficients as exp(βxzix). This is called as “proportional hazard”.

The original model by Cox considered the time-dependent covariates where zi changes by time. However, usually we assume
the effect of covariates on the event occurrence is independent from time (thus not changing by time). Therefore, the ratio of
hazards between different individuals is constant regardless with time: The ratio of the 1st individual’s hazard at time t to the 2nd
individual’s hazard at time t is not including h0(t) (cancelled from numerator and denominator), then the hazard ratio is given by
the following formula. It means that the hazard ratio doesn’t depend on the shape of h0(t).
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exp(β1z11 + β2z12 + ... + βpz1p)
exp(β1z21 + β2z22 + ... + βpz2p)

The relationship of survival function and hazard function can be summarized as follows. Denote the non-negative random
variable showing the time to event occurrence as T , then the survival function S (t) is the probability of T ≥ t. By this definition,
S (0) = 1. The hazard function h(t) is the instantaneous probability of event occurrence at time t. Then we can get the following
equations.

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

= lim
∆t→0

S (t) − S (t + ∆t)
∆tS (t)

= −dS (t)
dt

1
S (t)

= −d(log(S (t))
dt

The cumulative hazard function H(t) is,

H(t) =
∫ t

0
h(u)du = − log S (t)

Thus we obtain
S (t) = exp(−H(t))

Denote the cumulative hazard function at time t of an individual with covariates vector z as H(z, t), the survival function of the
same individual as S (z, t). If the proportional hazard stands,

H(z, t) =
∫ t

0
h(z, u)du =

∫ t

0
h0(u) exp(βz)du = exp(βz)H0(t)

Then we obtain the following equation.

S (z, t) = exp(−H(z, t)) = exp{− exp(βz)H0(t)}

Take the logarithm and inverse the sign and take the logarithm again, the we obtain the following equation.

log(− log S (z, t)) = βz + log H0(t)

From this equation, we can see that the pararell curves with the gap of βz will be drawn, being survival time as horizontal axis and
log(− log S (z, t)) as vertical axis. If this pararell nature is not met, the "proportional hazard" assumption cannot stand and thus Cox
regression is not suitable.

In estimation of β, the concept of partial likelihood is applied. If we decompose the probability of event occurring for ith
individual at time t into the probability of single event occurrence at time t and the conditional probability that the event occurred
for the specific individual i under the condition that the event occurred at time t, the former is still unknown unless we can assume
any specific parametric model, but the latter L(i, t) can be always estimated as the ratio of ith individual’s hazard being numerator
and the sum of all individuals’ hazard within the whole population at risk at time t.

For the all event occurrences, denote the products of all L(i, t)s as L, the meaning of L is the total likelihood minus the likelihood
concerning time, thus is called as partial likelihood. To estimate a “good” parameter β that asymptotically converges to the true
parameter as the sample size becomes larger, and whose distribution obeys a normal distribution, and whose variance becomes
smallest, Cox conjectured that such β could be obtained when the L became maximum and this conjecture was given prove by
the Martingale theory. By this fact, the proportional hazard model is also known as Cox regression*34. The basic form of Cox
regression in R is coxph(Surv(time,cens)~grp+covar,data=dat).

Practice� �
In the aml dataset, conduct Cox regression on the effect of treatment (maintained / nonmaintained) on the survival time.� �

*34 If multiple events occur simultaneously, there are several methods to treat them: Exact method, Efron’s method, Breslow’s method, discrete method, and
so on. However, whenever possible, Exact method is recommended. The discrete method should be used when the survival times are given as discrete
measures. Many statistical software uses Breslow’s method, but the default method in R’s coxph() function is Efron’s method. Generally speaking, Efron’s
method gives closer results than Breslow’s method.
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� �
require(survival)

summary(res <- coxph(Surv(time,status)~x, data=aml))

KM <- survfit(Surv(time,status)~x, data=aml)

par(family="sans",las=1,mfrow=c(1,3))

plot(KM, lty=1:2, main="Kaplan-Meier plot of survival time of aml dataset.")

legend("topright", lty=1:2, legend=levels(aml$x))

plot(survfit(res),

main="The survival curve of the reference individual\n with the treatments being covariates")

plot(KM, fun=function(y) {log(-log(y))}, lty=1:2, main="Double logarithmic plot of aml dataset")� �
The result given in the second line is shown below.� �
Call:

coxph(formula = Surv(time, status) ~ x, data = aml)

n= 23

coef exp(coef) se(coef) z p

xNonmaintained 0.916 2.5 0.512 1.79 0.074

exp(coef) exp(-coef) lower .95 upper .95

xNonmaintained 2.5 0.4 0.916 6.81

Rsquare= 0.137 (max possible= 0.976 )

Likelihood ratio test= 3.38 on 1 df, p=0.0658

Wald test = 3.2 on 1 df, p=0.0737

Score (logrank) test = 3.42 on 1 df, p=0.0645� �
The p value of the test of null-hypothesis that the maintained and nonmaintained group have the same hazard is 0.074, so that

the null-hypothesis is not rejected at the 5% significance level*35. The exp(coef) 2.5 is the estimated hazard ratio of 2 groups,
so that we can judge the nonmaintained group has 2.5 times higher hazard of maintained group’s hazard but the 95% confidence
intervals includes 1.

By the third line and later scripts, 3 graphs are drawn. From left to right, the Kaplan-Meier plot estimated for 2 groups separately,
the baseline survival curve with 95% confidence intervals as the result of Cox regression with treatment being covariates, and the
double logarithmic plot are drawn, respectively.

If you dare to draw the baseline survival curves of Cox regression with covariates for the 2 treatment groups separately, for
example, subset=(x=="Maintained") option can be used in the coxph() function, when the group variable cannot be included
as covariates. More than 2 survival curves could be drawn without erasing previous graphs by specifying par(new=TRUE) option.
However, I don’t recommend this manner.

There are three strategies to control the effect of covariates on the survival time. For example, to analyze the survival time of
cancer patients, the effects of stage should be controlled. The possible strategies to control them are:

1. Analyzing the survival time separately by each stage.
2. Assuming that the effects of other covariates are common to all stages, then set the stage as strata.
3. Including the stage as covariates in the same model.

The third strategy has an advantage that the effect of stage can be quantitatively estimated, but it requires the unrealistic condition
that the baseline hazards are the same for all stages. In addition, the method of coding stages as covariates may affect the result
(usually coding as dummy variable).

The second strategy means that the baseline hazards are different by stage. In the coxph() function, the option
strata() can be used for different baseline hazards. For example, if the data.frame of survival time of cancer pa-
tients is aml, which includes 4 variables: the variable of survival time time, the variable of censoring flag status, the
group variable showing the treatment x, the variable of stage of cancer progress stage, then the model can be written as
coxph(Surv(time,status)~x+strata(stage), data=aml)*36

*35 Score (logrank) test in the bottom line is the result of Rao’s score test, different from the logrank test with survdiff().
*36 However, in fact, aml data.frame does not include stage.
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Anyway, Cox regression is a kind of model-fitting, so that we can select better models by the residual analysis, likelihood ratio
test, and the squared multiple correlation coefficients, but AICs are usually not available because calculating AIC requires the
specified distribution in the baseline hazard.� �

In EZR, select [Statistical analysis], [Survival analysis], [Cox proportional hazard regression], then select time in the
box of “Time”, select status in the box of “Event”, and select x in the box of “Explanatory variables” (if you set here
variables as the form of “+strata(Variable Names)”, different baseline hazards by strata are assumed). After all,
click [OK], then you get the result.� �
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