公衆衛生学(14)環境問題と公害

27 January 2014 Minato Nakazawa <minato-nakazawa@umin.net>

環境形成作用と公害・地球環境問題

- ヒトは物理化学的環境条件を改変できる。 つまり大きな環境形 成作用をもつ
 - ■副作用の軽視が公害につながった
 - ●公害とは、public nuisance(公的生活妨害)「産業活動に よる環境汚染が原因で、不特定多数の人々の生活が妨 害されること」
 - ●産業革命により環境形成作用が増大したことが一因。英 国の煙害防止法は1821年,公衆衛生法は1875年など, 早期より対策されたが大気汚染被害は減らず, 1956年 大気清浄法までロンドンの殺人スモッグ発生
 - ●地球環境問題は、副作用の経路が長く見えにくい。生態系 の要素は複雑な相互作用をしているので,意図しない副作 用が起こる(間接効果の非決定性)
 - ●森林伐採とマラリア流行
 - ●フロンガス→オゾンホール→オーストラリアの皮膚がん

水俣病・第二水俣病の発生機序

●工場排水 メチル水銀・無機水銀 魚←(メチル化)プランクトン ↓ (食べものとして摂取) 多量だと腎毒性 ヒト

金採掘や精錬業で 無機水銀蒸気に曝露 ↓ (ブラジル等) 肺胞から血中へ メチル化 腎臓へ

<u>メチル水銀として脳</u>に蓄積→無機化して腎臓へ

(やがて排泄) 酸化ストレスとERストレスを起こす

*GPxや不飽和脂肪酸摂取による防御が注目

四日市喘息

- ●四日市市の工場排ガス中の硫酸ミスト, 大気中 に溜まった亜硫酸ガスへの慢性曝露による中毒
- 1955年9月から石油関連企業が大規模活動開 始→降下煤塵は少なかったので目には見えな かったが, 亜硫酸ガス, 硫化水素, 炭化水素, 窒素酸化物濃度が高い大気汚染悪化
- 1962年頃から四日市市に激しい喘息症状を呈 する患者多発「四日市喘息」→1966年損害賠 償請求訴訟→1971年原告勝訴
- 喘息は大気汚染がなくても発生するので、疫学 的因果関係証明が認められた意義は大きい

環境問題と公害(準備)……環境とは?

- ●主体あっての「環境」
- ●生物にとっての環境
 - ●物理化学的環境=大気, 水, 放射線, 化学物質等
 - ●生物(学)的環境=ヒト,他の生物,ウイルス等
- ●ヒトの特殊性
 - ●他の生物は物理化学的環境条件が生息場所を制 限する
 - ▶ヒトは物理化学的環境条件を大きく改変できるので どこにでも住める

日本の公害問題

- 江戸時代~戦前の鉱毒事件は大規模
 - 足尾鉱毒→渡良瀬遊水池を作って谷中村住民を強制退去 (1973年に銅を掘り尽くして閉山、精錬所は1980年代まで操業)
 - 土呂久砒素公害:1920年~1941年(+1955年~1962年) の「亜ヒ焼き」、宮崎県高千穂町土呂久、1923年から健康被 害, 1990年和解
- ▶ 戦後は4大公害訴訟が代表的
 - 水俣病:熊本県水俣湾周辺,メチル水銀への慢性曝露による中枢 神経症状, 原因究明に長い年月がかかった
- 新潟水俣病: 新潟県阿賀野川流域, メチル水銀への慢性曝露によ る中枢神経症状
- イタイイタイ病:富山県神通川流域,カドミウムの慢性摂取による腎 障害と骨のカルシウム置換
- 四日市ぜんそく:三重県四日市市, 硫酸ミストあるいは亜硫酸ガス への慢性曝露によるぜんそく
- ●補償の線引き(認定)に明確な基準を作る難しさ(問題解決?

イタイイタイ病

- ■富山県神通川流域
- ●上流の神岡鉱業所からのCd流出 →急性毒性の標的臓器は腎臓
- ●腎臓障害により体内Cd貯留、骨のCaを置換 →きわめてもろく、折れやすい骨
- 最初の患者は1912年、1940年頃から多発
- ●戦前は鉱毒から稲作被害、米摂取による食中毒 が疑われていたが、患者自身が差別を恐れて秘 匿、戦後は細菌説、栄養不良説、リウマチ説な ど、重金属説は軽視→1961年地元の萩野昇医 師が患者の骨からCd大量検出→1966年認定

典型7公害と対策法制

- 大気の汚染→大気汚染防止法
- 水質の汚濁→水質汚濁防止法,下水道法,水道法
- 土壌の汚染→土壌汚染防止法
- ◎ 騒音→騒音規制法
- ◎ 振動→振動規制法
- 地盤沈下→地下水の保全が必要なので、「工業用水法」 「建築物用地下水の 採取の規制に関する法律」
- 悪臭→悪臭防止法
- 公害対策の大枠として「公害対策基本法」「公害被害者救 済法」
- 環境保全の大枠として「環境基本法」「環境影響評価法」

基本法の移行(1993年)

- http://law.e-gov.go.jp/htmldata/H05/H05H0092.html
 - 環境基本法の施行に伴う関係法律の整備等に関する法律
 - 第一条 公害対策基本法(昭和四十二年法律第百三十二号)は、廃止する。
- 改正の要点
 - (1) 目的の改正:「生活環境の保全については、経済の健全な発展との調和が図られるようにするものとする」→「福祉なくして成長なし」→「国民が健康で文化的な生活を確保するうえにおいて公害の防止がきわめて重要である」
 - (2) 公害の定義の追加:「土壌の汚染」の追加,「水質の汚濁」の定義の拡大(底質の悪化を含むように)
 - (3) 廃棄物処理対策:事業者責務の明確化,環境衛生上支障のない処分のための 公共処理施設の整備
 - (4) 自然環境の保護:狭い意味の生活環境の保全のみでなく、広く緑地の保全等自然 環境についてその質を高度に保つ必要があることを明確化
 - (5) 環境基準の「あてはめ」の委任:環境基準が2種類以上あって地域または水域ごとに基準を変える場合、その権限は都道府県知事に委任
 - (6) 都道府県公害対策審議会の必置制:審議会の乱立を回避するため
- 環境基本法 http://law.e-gov.go.jp/htmldata/H05/H05H0091.html
 - 第一条 この法律は、環境の保全について、基本理念を定め、並びに国、地方公共団体、事業者及び国民の 養務を明らかにするとともに、環境の保全に関する施策の基本となる事項を定めることにより、環境の保全に 関する施策を総合的かつ計画的に推進し、もって現在及び将来の国民の健康で文化的な生活の確保に寄与 するとともに人類の福祉に貢献することを目的とする。

流出事故

- 食品製造ラインにおける混入と流通による急性中毒
 - カネミ油症事件, 森永ヒ素ミルク事件等
- 毒物が事故で環境中に流出し、ヒトに急性中毒が発生
 - セベソ事件, ボパール農薬流出事件
- 毒物が事故で環境中に流出し、環境が居住不適になったり、作物や家畜が食用不適になったりした事例
 - チェルノブイリ原発事故, 福島原発事故
- 事物が事故で環境中に流出し、野生生物に影響が出て生物 多様性が減少した事例(→地球環境問題として)
 - バルディーズ号に代表されるタンカー座礁事故、メキシコ湾の海底油田からの原油流出

海外でも都市の廃棄物は問題

- 中世のロンドンやパリの道路がゴミで溢れていたのはよく 知られている
- 現代の途上国の都市も道路はゴミで溢れているところが多い(購入物資の容器等も村で果物の皮を捨てていたのと同じ感覚でポイ捨てする)
- 途上国では、都市近郊や都市内のスラムに廃棄物(輸入 されたeWasteを含む)が集積するが、そこから再資源化 可能な物資を掘り出して売る貧困層が存在
- 廃棄物内の毒物に曝露して中毒になるケースも多い
 - フィリピンやベトナムの鉛中毒など

13

3R戦略

- 1980年オイルショック→資源は無限ではない!
- 資源の有効な利用と廃棄物発生抑制,環境保全を目的として、「再生資源の利用の促進に関する法律」(1991年,リサイクル法)→2000年「資源の有効な利用の促進に関する法律」に改訂
- 資源の有効利用のための戦略の基本は3R (reduce, reuse, recycle)
- 各種リサイクル法
 - 容器包装リサイクル法(1997年)
 - 家電リサイクル法(1998年)
 - 建設リサイクル法(2000年)
 - 食品リサイクル法(2000年)
 - 自動車リサイクル法(2002年)

アスベスト肺・中皮腫

- 元々は炭鉱夫や建設労働者の職業病であり、産業衛生の問題と思われてきた
- 2005年5月、クボタ旧神崎工場周辺住民3名の中皮腫が 工場から飛散したアスベストに由来することをクボタ 自身が認め見舞金を出した

「クボタ・ショック」=公害問題という認識

- 2010年9月末時点で住民の救済金支払い請求者(遺族 含む)は227人(うち死亡156人)
- 検出法に課題あり。胸膜肥厚斑はX線画像では検出困 難、環境中アスベストは種類により方法が異なる、等
- アスベストは広く建材として使われたので、震災瓦礫の影響が大(ひょうご労働安全衛生センター他『震災とアスベスト』アットワークス、税別1,200円、ISBN978-4-939042-64-5)

廃棄物(waste)の問題

- 廃棄物は、人の生活や経済活動に伴って発生する(zerowasteはきわめて困難)
 - 近年は難分解性物質(PCB等)や毒物の蓄積が問題
- 都市環境で増えやすい
 - 農村では堆肥の原料となる生ゴミや屎尿
 - 多様な物資の集積
 - 多様な産業からの産業廃棄物
 - 多い人口
- 農村部でも大量生産を目的とした機械化, 化学肥料, 農薬 の普及に伴い深刻化(人や家畜の屎尿)
 - →環境衛生面から法規制が必要に

12

日本の廃棄物対策法制の歴史

- 1954年「清掃法」: 市街地区域を中心とする区域内汚物処理を規定
- 廃棄物急増により1970年「廃棄物の処理及び清掃に関する法律」 →多様化により1991年に大改訂
 - →1997年, すべての産業廃棄物へのマニフェスト制度(廃棄物の内容等を記載した文書「マニフェスト」を同時に運搬し確認する制度)義務づけ→2000年, (1)排出事業者責任の徹底による産業廃棄物の不適正処理対策, (2)公共関与による安全・適正な施設整備の推進, (3)廃棄物処理への信頼確保のための施設許可等の規制を強化

(注)トラックのクリップアート出典: http://illustration-free.com/track/track-dl-04.html

14

廃棄物の分類と処理

•一般廃棄物

-ごみ:家庭系/事業系

-屎尿:屎尿/浄化槽汚泥

_特別管理一般廃棄物: PCB使用部品, 煤塵, 感染性一般廃棄物等

•産業廃棄物

-燃え殻 -汚泥

-廃油

_....

-特別管理産業廃棄物:強酸,強アルカリ,感染性産業廃棄物,廃 石綿等

15

16

• できる限り再利用・資源化し、残りを衛 生的に処理

- 資源の節約にもなり、廃棄物も減らせる
- 処理方法は、焼却、直接埋立て、高速 堆肥化(コンポスト化), 堆肥化・飼 料、リサイクル等
- 市町村の責務(市町村ごとに異なる)

*神戸市の家庭ごみ分別

http://www.city.kobe.lg.jp/life/recycle/waketon

nttp://www.city.kobe.lg.jp/ife/recycle/waketon/shiraberu/index_05.html *大型ゴミ、缶・ぴん・ペットボトル、容器包装プラスティック、燃えないごみ、カセットボンベ・スプレー缶、燃えるごみ * 紙類はなるべく燃えるごみにせずリサイクルするニャム機両なもペース。

ることが奨励されている

徳島県上勝町は34分類→ (http://www.kamikatsu.jp/docs/2013102500017/) (http://www.kamikatsu.jp/zerowaste/gomi.html)

Minato Nakazawa

上勝町資源分別方法

17

-般廃棄物

- 産廃は最終処分場をどうするかが大問題。 減量が必須
- 排出→直接再生+中間処理を経て再生(46%) →中間処理を経て最終処分+直接最終処分(10%)
- 福島の原発事故によって生じた放射性物質は、 放射性物質汚染対処特別措置法で処理法を規定 http://shiteihaiki.env.go.jp/pop/02.html
 - * 放射能濃度で分類
 - 8,000Bq/kg以下→通常の廃棄物
 - 8,000Bq/kgを超える→**指定廃棄物**
 - *8,000~10万Bq/kg: 管理型処分場で処分 *10万Bq/kg超:遮断型構造の処分場で処分 (ただし福島県では中間貯蔵施設に)
- 指定廃棄物とは,「平成23年3月の原子力発電所の事故によって放出された放射性物質が、ごみの焼却灰、下水汚泥、浄水発生土、稲わら・たい肥 焼却灰、下水汚泥、浄水発生土、稲わら・たい肥 などに一定濃度を超えて付着・濃縮したもののう 環境大臣が指定したもの」

産業廃棄物,災害廃棄物

東京都日の出町の二ツ塚最終処 分場。国立市など周辺市町村から も受け入れ

junkankumiai.com/works/futatsuz uka/

家庭用品法

18

化審法(化学物質の審査及び製造等の規制に関する法律)


- http://www.safe.nite.go.jp/kasinn/pdf/kasinho_houritsu2.pdf
- PCB汚染問題を受けて1973年に制定
- PCB類似の物質を作らせない→ 新規開発物質の安全性の事前審査
- 排出口以外からの環境汚染を防止→ 製造・輸入・使用段階での規制
- 当初は健康保護の目的のみ→2003年改正で動植物への影響も
- 2009年改正で、既存化学物質を含む全ての化学物質を評価の対象に(優 先順位をつけて評価) (2010年、2011年の2段階施行)
- 主な審査の視点:環境中での分解性、生物への蓄積性、人への毒性及 び生態毒性(長期毒性)
- 当初は有害性のみ着目→改正後は「リスク」に着目し、評価・規制

DDTの功罪

- DDT(dichloro diphenyl trichloro ethane)は非常に有効かつ安価な 殺虫剤。シラミ、蚤、蚊に有効なため、チフス、マラリア、黄熱病の流 行を止めた
- 鳥類や爬虫類の卵殻が柔らかくなるなど環境毒性があり、1970年 代に先進国では製造・使用禁止したが消失せず。DDT同様に残留 性と蓄積性が問題になる物質をPOPsとして国際的に禁止する流れ (大気大循環などがあるので、一国の禁止では不十分) →POPs条約へ
- アフリカのマラリア対策を除けば全面禁止

- 「有害物質を含有する家庭用品の規制に関する法律」(1973年制 定, 1974年施行;最新の改正は2009年) 衣料用繊維の大部分は、防縮、防虫、防菌、防カビ、染色など加工済。
- (eg.)防縮加工の過程で発がん性があるホルムアルデヒドが使われる。 衣類については溶出試験を行うことがこの法律で定められている。
- 有機水銀化合物なども規制。家庭用品に使用される化学物質につい て, 変異原性試験, 亜急性毒性試験, 皮膚刺激性・皮膚感作性試験, 細胞毒性試験が基本的な毒性項目として実施され、生殖・発生毒性試 験や吸入毒性試験が追加実施されることもある。抗菌剤では有機水銀 化合物、トリブチル錫化合物、トリフェニル錫化合物の製造・使用が規 制されている。

フロン回収・破壊法

- オゾンホールがきっかけで、2001年6 月22日制定「特定製品に係るフロン類 の回収及び破壊の実施の確保等に関 する法律」
- ://law.e-gov.go.jp/htmldata/H13/H13HO064.html 成層圏に滞留しオゾン層を破壊する 作用が強い「特定フロン」が環境中に 排出されないよう回収する
- 特定フロンの製造・消費・貿易の規制 開始は1987年採択, 1989年発効のモ ントリオール議定書から。日本は1988 年加入。

http://www.env.go.jp/earth/ozone/cfc/law/kaisei/pamph.pdf

化管法

- 正式名称を「特定<u>化学物質</u>の環境への<u>排出</u>量の<u>把握</u>等及び<u>管理</u>の改善 の促進に関する法律」という。
- http://www.meti.go.jp/policy/chemical_management/law/pdf /houreishu.pdf
- OECD勧告を受けて1999年に制定
- PRTR制度とMSDS制度からなる
- PRTR (Pollutant Release and Transfer Register)は「有害性のある多 種多様な化学物質が、どのような発生源から、どれくらい環境中に排出さ れたか、あるいは廃棄物に含まれて事業所の外に運び出されたかという -タを把握し、集計し、公表する仕組み」
- MSDS(Material Safety Data Sheet)は事業者による化学物質の適切な 管理の改善を促進するため、対象化学物質を含有する製品を他の事業 者に譲渡又は提供する際には、その化学物質の性状及び取扱いに関す る情報を、化学物質安全データシート(MSDS)として事前に提供すること を義務づける制度
- 平成22年4月1日から、事業者として医療業も含まれるようになった 指定された562物質について、メーカーから病院が購入したり、病院が産 廃業者に廃棄を委託する際にMSDSの届け出が必要

化学物質の内分泌攪乱作用への対策

- 環境省の取り組み: SPEED'98→ExTEND2005→EXTEND2010 http://www.env.go.jp/chemi/end/extend2010.html http://www.env.go.jp/chemi/end/extend2010/seminar/seminar2011.html
- DDTの慢性毒性は古くから指摘。DESシンドロームも1970年。クローズ アップされたのは1996年の「奪われし未来」。
- 1996年度厚生科学研究事業「化学物質のクライシスマネジメントに関す る研究班」、1997年環境庁「外因性内分泌攪乱化学物質問題に関する 研究班」, 1998年「環境ホルモン戦略計画SPEED'98」, 1999年ダイオキ シン類対策特別措置法
- 1998年6月環境ホルモン学会(正式名:日本内分泌撹乱化学物質学会) 発足。http://www.jsedr.jp/
- SPEED'98で検討した物質の中に、ヒトの内分泌を攪乱する明白な証拠 が出たものはほとんど無かった

ダイオキシン類対策特別措置法

- 世論の盛り上がりを受けて1999年に制定。同年環境省が発表した基本的考え方では、ダイオキシン問題は将来に渡って国民の健康を守り環境を守るために内閣をあげて取り組みを一層強化しなければならないものであり、4年以内に排出総量を9割削減、所沢で見られたような風評被害への対策、TDI(耐容一日摂取量)を始めとするする各種基準作りなどが緊急に必要であるとされた→で、どうなった?
- 2000年末に法施行 → 一般廃棄物や産廃焼却炉の厳しい排ガス規制開始 → 2003年ダイオキシン類曝露による健康リスク改善無し(1)リスクの大きさが体内に蓄積されているダイオキシンに依存
 - (1)リスクの人ささが体内に番負されているタイ (2)ダイオキシンの生物学的半減期が長い
 - (3)ヒトの体内への主たる経路は食品(魚介類からが7割)
 - (4)魚介類中のダイオキシンも環境中残留分の影響大
 - (5)ヒトが摂取するダイオキシンの6~7割はco-PCB
 - (6)焼却炉排ガスのダイオキシン類のうちco-PCBは5%程度(co-PCB源
 - は捨てられたPCB製品かもしれない)
 - (7)環境中の残留PCDD/Fsは過去に使われた農薬由来が主
 - ⇒排ガス規制は的外れ? ⇒長期的影響は別として、短期的には。
- 代替リスク回避策としてはディーゼルの排ガス規制が有効
- ⇒東京都条例など対策進展

地球環境問題の例~森林減少

- ●世界の森林面積は約35億ha。森林減少は約 1,100万ha(日本の面積の1/3)
- 熱帯で発生。温帯林はやや増加
- ●原因:材木用伐採、焼畑や放牧のための伐採、 ダムや道路の建設に伴う伐採、プランテーションのための伐採、森林火災、酸性雨による立ち 枯れ、病害虫による立ち枯れ等
- ●影響:生物多様性の減少,地下水位低下,洪水 増加(一昨年のタイやミャンマー,昨年のイン ドやバングラデシュ等),土壌流出,砂漠化等

(火災の場合)喘息,呼吸器疾患等

●ITTOガイドラインやUNFF設置等で対策

■ 地球環境問題対策~国際協調と調和の促進

- 1972年にストックホルムで国連主催の環境問題国際会議が開かれた。並行して民間の国際環境会議も開かれ、宇井純らにより日本の公害問題の総まとめが行われた。公害病患者自身が世界に向けてアピールし、公害の悲惨さが世界中で認識されるようになった。
- 今日の地球環境問題への取り組みは、国連、例えば国連環境開発 計画(UNEP)を中心として、各種の政府間パネルや、NGOによって 活発に行われている。フロンガス排出を規制するモントリオール議 定書(1987年)、IPCC(気候変動に関する政府間パネル)、COP(気 候変動枠組み条約締約国会議)、POPs条約(残留性有機汚染物質 に関するストックホルム条約)などが有名。
- POPs条約(残留性有機汚染物質に関するストックホルム条約):環境中での残留性、生物蓄積性、人や生物への毒性が高く、長距離移動性が懸念されるPCB, DDT等の残留性有機汚染物質(POPs: Persistent Organic Pollutants)の, (1)製造及び使用の廃絶, (2)排出削減, (3)これらの物質を含む廃棄物等の適正処理等を規定
- 1992年地球サミット(RIO会議)→1995年UNEPで12種類のPOPs を規制する国際条約策定を求める決議→2001年採択,2004年に 締約国が50になり発効。日本は2002年に加入。

公害問題と地球環境問題の対比

● 公害問題

人的被害がある

受益者と被害者がオーバーラップ(違う人もいる)

比較的地域局在

原因企業が特定しやすい

中国、タンザニア、パプアニューギニア等対応は多様

ヒトへの直接被害はない(あるいは見えない)ことも

◉ 地球環境問題

受益者と被害者が同一ではないのが普通 地球規模の大気大循環や潮流の影響 少数の犯人を見つけることは難しいため、各国政府の 協力のもとに、国際機関が主導して対応

エコチル調査

 化学物質等の環境要因の子供への影響を調べる調査 http://www.env.go.jp/chemi/ceh/index.html

例 2 ~地球温暖化

- 化石燃料使用による二酸化炭素濃度急増
- 濃度の絶対値は過去にもあった水準だが増加速度 が速いため影響大
- ■温室効果ガスとしては二酸化炭素の他、メタン、 フロン、亜酸化窒素なども含まれ、これらも増加。メタンは資源開発や家畜増産によっても増加する
- 温暖化にともなう海面上昇も問題視されている
- ●疾病分布の変化も問題と言われる
- IPCC(気候変動に関する政府間パネル) や、COP(気候変動枠組み条約締約国会議)で対 策

国際協調と調和の促進(続き)

- PIC条約(国際貿易の対象となる特定の有害な化学物質及び駆除剤についての事前のかつ情報に基づく同意の手続に関するロッテルダム条約):1998年採択。化学物質の危険有害性に関する情報が乏しい国への輸出によって、その国の人の健康や環境への悪影響が生じることを防止するため、輸出国が特定の有害物質の輸出に先立って輸入国政府の輸入意思を確認した上で輸出を行うこと等を規定
- 輸入国政府の輸入意思を確認した上で輸出を行うこと等を規定

 ・ GHS (The Global Harmonized System): 化学物質を国際的に規制するためには、国際的に調和された化学物質の分類・表示方法が必要であるとして2003年7月に国連で採択。すべての化学物質を対象とし、危険有害性に基づく分類が基本
- REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals): EUの新しい化学品規制。2008年6月1日から運用開始。EUで物質(調剤中の物質も該当)を年間1トン以上製造又は輸入する事業者に対し、登録手続義務付け
- RoHS指令(DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment): 有害物質の電気電子機器への使用を制限。2006年7月1日施行。2011年改正(2011/65/EU;リスボン条約)鉛, 水銀, カドミウム, 六価クロム, PBB (polybrominated biphenyls), PBDE (polybrominated diphenyl ethers)の6物質を使用制限(EUIこ上市する電気電子機器にこれら6物質を含んではならない)。2014年7月22日以降医療機器,2016年同日以降体外診断用医療機器も含む。
- 2012年に開催されたRIO+20ではsustainability強調

参考文献

- >石 弘之『地球環境の事件簿』岩波書店, 2010年
- ▶池田寛二(編著)『地球環境問題の現場検証:インドネシアに見る社会と環境のダイナミズム』八千代出版 2006年
- →政野淳子『四大公害病』中公新書, 2013年.
- ▶津田敏秀『医学者は公害事件で何をしてきたのか』 岩波書店、2004年