Transmission-virulence trade-offs in malaria parasites

Minato Nakazawa

Department Seminar on 3 July 2008

(References)

 Alizon S, van Baalen M: "Transmission-virulence trade-offs in vector-borne diseases." <u>Theor. Pop. Biol.</u>, 2008 (in press)
 Anderson RM, May RM: "<u>Infectious Diseases of Humans.</u>" Oxford Univ. Press, 1991.

Bruce MC, Donnelly CA, Alpers MP, et al.: "Cross-species interactions between malaria parasites in humans." <u>Science</u>, 287: 845-848, 2000.

Ewald P: "<u>Evolution of Infectious Diseases.</u>" Oxford Univ. Press, 1994.

Knell AJ: "Malaria." Oxford Univ. Press, 1991.

Introduction (cont'd)

- There were very few studies to link within-host and epidemiological dynamics of parasites.
- The previous study by the authors showed a trade-off between transmission and virulence emerges from within-host dynamics.
 - The shape of trade-off curve depends on model parameters; it means the existence of "Evolutional Stable Virulence" (=optimal virulence).

Life-cycle of plasmodium (Knell, 1991)

Virulence distribution for direct / indirect transmission diseases (Ewald P, 1994) Frequency of Pathogens (%)

Evolution of optimal virulence in single parasite species infection

• Using R_0 (basic reproduction number; generally speaking, indicates the number of infected hosts regenerated by the single infectious host), μ (mortality of uninfected host), α (virulence; excess mortality caused by infection), $v(\alpha)$ (recovery rate), β (transmission rates), and S (density of susceptible hosts), the equation $R_0=\beta S/\{\mu+\alpha+v(\alpha)\}$ generally stands (Anderson and May, 1991)

Features of P. falciparum

- P.f. kills about 2 million people each year, shares 3.1 % of world mortality.
- Not very virulent, because most adults in endemic area can survive. Majority of malaria death occurs in children due to naive immune system.
- Gametocytes can invade mosquito hosts but it constitutes only a few percent of circulating parasites.

Introduction

- As Ewald (1994) wrote, most models for the evolution of parasite virulence assuming trade-off between virulence and transmission (weak trade-off for vector-borne diseases).
- There were many criticisms for this assumption's general validity.
 - Parasite reproduction does not necessarily mean virulence.
 - Parasites having sexual life-stage within hosts enables high variability in virulence.
 - Differential host immunization may lead to higher virulence (Gandon, 2004)

R codes for the previous slide

alpha <- seg(0,0.1,length=101) v1 <- exp(-alpha*20)/10exp(-alpha*100)/10 <- rep(0.4,101)rep(1,101) <- rep(0.1,101) <- beta*S/(mu+alpha+v1) R0v2 <- beta*S/(mu+alpha+v2) layout(t(1:2)) par(mar=c(4,4,0.5,0.5),cex=2)plot(alpha,v1,ylim=c(0,0.1),xlab=expression(alpha),ylab=expres sion(paste("v(",alpha,")"))) points(alpha,v2,pch=18) plot(alpha,R0v1,ylim=c(0,4),xlab=expression(alpha),ylab=expres sion(R[0])) points(alpha,R0v2,pch=18)

Model

- New features
 - Distinguish two within-host stages (replicate=merozoites=asexual; density x1 / transmit=gametocytes=sexual; density x2)
 - Lymphocytes (density y) kills parasites of both stages
- Equations (see, Table 1)
- $dx1/dt = (\phi(1-m)-\sigma 1y)x1$
- $dx2/dt = \phi mx1 \sigma 2yx2$
- This framework is applicable to persistent infection (steady state).
 - Old experimental data showed rapid reach to stable state (Boyd, 1949).

d
Description
Description
Parallel service proverb rate
Parallel service proverbing
Parallel service proverbing
Parallel service proverbing
Parallel parallels
Paralle

Model of immune system

- Strength of immune system = lymphocyte density y (not constant)
- Equation
 - $dy/dt = b + c1x1 + c2x2 \delta y$
 - · b: baseline production rate of lymphocyte
 - c1, c2: increase of lymphocytes production by merozoites and gametocytes, respectively.
 - δ: lymphocyte mortality

Epidemiological dynamics (cont'd)

- Transmission from human to vector can be linked with stable density of sexual stage parasites (x2).
- Since mosquitoes have immune system, minimum number of sexual parasites is needed to infect.
- Assume a mosquito ingests 4 microlitter out of 5 litter human blood pool, mean number of sexual parasites within it (M) is, using stable density, M=8 x 10⁻⁷ x2.
- Probability of having exactly n sexual parasites (p.(M)) obeys Poisson distribution, thus $p_{1}(M) = M^{n} e^{-M} / n!$
- β is the products of p₁(M) and a transmission constant, and assume the parasite virulence as, $\alpha(\varphi, m) = u_1 \varphi \tilde{x}_1(\varphi, m) + u_2 \tilde{x}_2(\varphi, m) + w \tilde{y}(\varphi, m)$.

 $R_0(\varphi, m) \propto \frac{aP_n \left(8 \times 10^{-7} \tilde{x}_2(\varphi, m)\right)}{\mu_h + u_1 \varphi \tilde{x}_1(\varphi, m) + u_2 \tilde{x}_2(\varphi, m) + w \tilde{y}(\varphi, m)} S_h$

Implication to health policy

 $= (\varphi(1-m) - \sigma_1 y - \tau_1) x_1$ $\frac{\mathrm{d}x_2}{\mathrm{d}t} = m\,\varphi x_1 - (\sigma_2 y + \tau_2)x_2$

· Effect of a treatment targeting either the asexual (A; τ 1) or sexual (B; τ 2) life stage of parasites (Fig.5)

Within-host stable state

$$\tilde{x_1}(\varphi, m) = \frac{\sigma_2}{\sigma_1} \frac{(1-m)\,\delta\,\varphi - b\sigma_1}{c_2\sigma_1m - (1-m)c_1\sigma_2}(1-m)$$
$$\tilde{x_2}(\varphi, m) = \frac{(1-m)\delta\,\varphi - b\,\sigma_1}{c_2\sigma_1m - (1-m)c_1\sigma_2}m$$
$$\tilde{y}(\varphi, m) = \frac{1-m}{\sigma_1}\varphi.$$

 These can be derived from the equations when differentials (increase rates) are zero.

Results

- Transmission rate has S-shape (Fig.1) --> existence of infective threshold
- Trade-offs between transmission and virulence (Fig.2)

Change of dominant plasmodia in Solomon Islands

Timina			005	E-1 2000			Car 2000									
Timing	NOV. 1995			Feb. 2006		Sep. 2006			_							
Age class	P.f.	P.v.	Total	P.f.	P.v.	Total	P.f.	P.v.	Tot	al						
0-10	23	8	34/95	13	29	44/105	8	21	29/	70						
11-20	6	1	8/21	3	5	8/17	6	4	11/	56						
21-30	3	0	3/12	3	1	4/16	1	4	5/2	4						
31-40	2	3	5/22	6	1	7/36	2	4	6/32							
41-50	1	1	2/11	2	3	5/13	0	2	2/16							
51-	2	0	2/25	2	0	2/29	2	1	3/2	5						
						Timing		F	Feb. 2007		Sep. 2007		Feb. 2008			
					_	Age cla	ISS	P.f.	P.v.	Total	P.f.	P.v.	Total	P.f.	P.v.	Total
						0-10		5	8	13/53	6	9	15/59	5	8	13/64
						11-20		1	3	4/12	2	5	7/22	1	2	4/22
						21-30		1	1	2/11	1	2	3/17	2	0	2/23
						31-40		0	0	0/21	1	2	3/19	1	3	4/18
						41-50		0	1	1/9	1	0	1/9	0	1	1/8
						51-		0	0	0/15	1	0	1/20	0	0	0/19
	_													_	_	

Epidemiological dynamics

- · As already shown, basic reproduction number R_{α} is (let β transmission rate, μ natural mortality, α excess mortality due to parasites, γ recovery rates, S susceptible hosts density), $R_{\alpha} = \beta S / (\mu + \alpha + \gamma)$.
- Considering two host species, R should be the products of R_o's for two hosts.
- But by assuming vectors' R_o as constant,

 $R_0 \propto rac{eta_{h o
u}}{\mu_h + lpha_h +
u_h} S_h.$

Results (cont'd)

· Sensitivity analysis for host natural mortality changes (Fig.3): A for linear, B for sigmoid transmission function; µ's effects are larger in B than in A.

Effect of parasite conversion rate (m) and within-host growth rate (ϕ) on R₆ (Fig.4)

Implications for my study

- · In Solomon Islands, dominant parasites changed from P.f. to P.v. for recent 10 years.
- Parasite rates of P.f. decreased under chloroquine treatment and wide-use of bednets.
- Instead, asymptomatic P.v. infection increased.
- Replication of plasmodia is restricted by the existence of other species/strains (Bruce et al., 2000)
- Switching of dominant plasmodium species in Solomon Islands could be modeled as application of this virulence evolution models?