Evaluation of test performances: ROC analyses, etc.

- To develop new method to detect diseases, what you need are:
 - · Calculating sensitivity and specificity
 - Data: (if originally category data) Positive/Negative by that test, Truly disease/healthy by the gold standard
 - Sensitivity = Positive in Disease / All of Disease
 - · Specificity = Negative in Healthy / All of Healthy
 - Data: (if originally continuous data) Values by that test, Truly disease/healthy by the gold standard
 - ROC analysis: by changing threshold value of positive/negative, seeking the best threshold as closest point to the upper left point where "sensitivity=1" and "1-specificity=0".
 - · Compare several methods by ROC analysis
 - The method to achieve highest area under the curve (AUC) is judged as the one with best performance.
 - Actual determination of method may also consider cost, feasibility, etc.

Example 2. Determination of numerical criterion for diagnosis

- By the depression score based on the questionnaire, screen major depression.
- Requirement: Both patients who were clinically diagnosed as depression and not depression. The depression scores for them. (2nd line show the score, 3rd line is clinical diagnosis)

1	2	3	4	5	6	7	8	9	10
20	13	19	21	22	28	11	25	16	19
dep	norm	norm	norm	dep	dep	norm	norm	norm	norm

If we set criterion as "more than 18 is depression", the cross table of diagnosis below. Sensitivity is 1, specificity is 3/7 Depression Normal Positive 3 4

· By changing criteria, we can get the highest set of sens/spec

3

Example 3. Compare several methods by ROC analysis

The results of 2 different tests to evaluate the same thing may differ. We can compare them by AUC as the result of ROC analysis

PID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pathology	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Marker1	2.2	1.8	2.4	2.2	1.7	2.5	2.9	2.3	1.8	1.1	1.3	1.4	2.3	1.0	0.8
Marker2	3.5	2.8	3.9	3.4	1.8	3.0	3.1	2.0	2.1	0.9	2.7	0.9	2.0	0.5	0.4

- Get this data as http://minato.sip21c.org/ROC1.txt
- Note: The name of dataset must not be ROC1 nor ROC2. If you do so, those are overwritten during calculation to cause error.
- [Statistical analysis][Accuracy of diagnostic test] [Compare two ROC curves]
- Z = -0.0981, p-value = 0.9218 AUC of roc1 AUC of roc2 0.8928571 0.9017857

Negative

0

Example1. Performance of malaria RDT for low parasite density

疾病 健康

- Several RDTs (Rapid Diagnostic Tests) for malaria, originally developed to distinguish malaria patients from other fever patients
 - Patients with fever must have malaria parasites with high density in their blood → High specificity and moderate sensitivity
- Is it also useful in active case detection study in low parasite densit, (less than 100 parasites / L) ?
- Pan-R malaria's results for P.vivax in Solomon Is. shown below [Statistical analysis][Accuracy of diagnostic test][Accuracy of qualitative test & Accuracy of qualitative test

OK Cancel

ICH.ME

感度 (sensitivity) = a/(a+c) ※ positive in disease と覚えるといい。 偽陰性率=c/(a+c) = 1 - 感度特異度 (specificity) = d/(b+d) ※ negative in health と覚えるといい

3 156

0.304

- 偽陽性率= b/(b+d) = 1 特異度陽性反応的中度 (positive predictive value) = a/(a+b)
- 陰性反応的中度 (negative predictive value) = d/(c+d)
- 陽性尤度比= (a/(a+c))/(b/(b+d)) = 感度/(1 特異度)
- 陰性尤度比= (d/(b+d))/(c/(a+c)) =特異度/(1-感度)

a positive test a negative test

Output Wind

Example 2 (cont'd) ROC analysis of the depression score

Enter the table from [File][New data set] as shown in the right screen cap.

Help

[Statistical analysis][Accuracy of diagnostic test][ROC ...] and specify options like bottom-left screen cap.

	1.0	
"	0.8 -	
0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	0.6	19.000 (1.000, 0.7
matur	8 0.4 -	
riterion "more 19 is depression" the best pairs of tivity and specificity under the curve: 0. CI: 0.6044-1 (DeLo	8571	1.0 0.8

Agreements of 2 diagnosis

- Kappa statistics can be used to evaluate the extent to agree each other.
- In the previous case, if we use criteria "more than 1.7 is positive" and "more than 2.8 is positive" for Marker 1 and 2, respectively, diagnosis may become table below using [Active data set][Variables][Bin numeric variables with specified threshold]. (Note: threshold given as ">=")

	PID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Pathology	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	Marker1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	0
	Marker2	1	0	1	1	0	1	1	0	0	0	0	0	0	0	0
•	Using [Statistical analysis][Discrete variables][Compare proportions (McNemar)] \rightarrow We can get the cross table to be used for Kappa															
•	[Statistical analysis][Accuracy of diagnostic test][Kappa statistics for agreement of two tests] Enter 5 for ++, 4 for +-, 0 for -+, 6 for, then click [OK]															
	skappa est se 1.0.5 0.2236068 0.5 0.4273873 0.5 0.4273873 1.2 2.236068 1.2 2.236068 1.2 2.236068 1.2 2.236068 0.05234732												- Alexandre			