
Demography Special Lecture (6) 23 May 2019 Mortality and life tables

R codes and data for today's class can be obtained as http://minato.sip21c.org/demography-special/deaths.txt http://minato.sip21c.org/demography-special/code20140522.R (age-standardization) http://minato.sip21c.org/demography-special/code-chap6.R http://minato.sip21c.org/demography-special/tables-6.xls http://minato.sip21c.org/demography-special/answer6e.R (for Exercises) http://minato.sip21c.org/demography-special/table6e.xls (for Exercises)

Crude Death Rate (CDR) for general mortality level (but ignoring age structure)

Infant Mortality Rate (IMR) for sanitation level (Pay attention to the difference between the populations of numerator and denominator) Neonatal Mortality Rate (NMR), Early Neonatal Mortality Rate (ENMR), Stillbirth Rate (SBR) (Note: Pay attention to the definition of stillbirth/spontaneous abortion, in current Japan, 22 weeks as gestational period is critical) and Perinatal Mortality Rate (PMR) for medical standards and maternal health level (Note: Maternal Mortality Ratio (MMR) is not explained in the text.)

Explanation for "Specific Death Rates" and "Standardization": As Sweden and Kazakhstan's population and death data by age show, CDR is largely affected by age-structure and ASDRs are difficult to see (the meaning of many values are not clear).

<u>Age-standardized mortality rates are useful</u> (amongst, **SMR** is an important measure, especially for developing countries with poor data quality).

	Example of age standardization
$\begin{array}{l} \textbf{Age standardization} \\ \bullet \text{ Direct method} \\ \bullet \text{ ASDR (Death at age x per population at age x) in target population: Dt(x) \\ \bullet \text{ Reference (standard) population for each age: SP(x) \\ \bullet \text{ Total reference population: SP=$\SigmaSP(x) \\ \bullet \text{ age-adjusted (direct) mortality rate } = \Sigma(\text{Dt}(x)^*\text{SP}(x)) / \text{SP} \\ \end{array} \begin{array}{l} \bullet \text{ Indirect method} \\ \bullet \text{ ASDR (Death at age x per population at age x) in reference (standard) population: Ds(x) \\ \bullet \text{ Total number of death in target population: TD } \\ \bullet \text{ Total reference population: SP=$\SigmaSP(x) \\ \bullet \text{ age-adjusted (direct) mortality rate } \\ = \Sigma(\text{Dt}(x)^*\text{SP}(x)) / \text{SP} \\ \end{array}$	 sk <- read.delim("http://minato.sip21c.org/demography-special/deaths.bd") Reference (standard) population for each age group (STP) is necessary, so that it's given as STP <- (sk\$NSW+sk\$NK)/2 Standard ASDR (ASDRST) is got by STD <- (sk\$DSW+sk\$NK)/2, ASDRST <- STD/STP Sweden's ASDR (ASDRSW) is got by ASDRSW <- sk\$DSW/sk\$NSW Direct method: sum(ASDRSW*STP)/sum(STP) Indirect method: (sum(sk\$DSW/sum(sk\$NSW*ASDRST))*(sum(STD)/sum(STP)) sk\$NSW ⁴⁶/₁₅₋₁₀ ⁴⁷/₁₅₋₁₀ ⁴⁶/₁₅₋₁₀ ⁴⁶/₁₆₋₁₀ ⁴⁷/₁₅₋₁₀ ⁴⁶/₁₆₋₁₀ ⁴⁶/₁₆₋₁₀

Table 6-2. Life table for California 1970

Age interval x to x+1	Mid-year Population (Px)	Deaths in year (Dx)	ASDR (Mx) = Dx/Px	Fraction of last year lived (ax)	Probability of dying (qx) = Dx / (Px + (1-ax)*Dx) = Mx / (1+(1-ax)*Mx)		
0	340483	6234	0.018309284	0.09	0.018009224		
1	326154	368	0.001128301	0.43	0.001127576		
2	312699	269	0.000860252	0.45	0.000859845		
3	323441	237	0.000732746	0.47	0.000732461		
4	338904	175	0.00051637	0.49	0.000516234		
5	362161	179	0.000494255	0.5	0.000494133		
6	379642	171	0.000450424	0.5	0.000450323		
83	34439	3753	0.10897529	0.5	0.103344302		
84	31009	3669	0.118320488	0.5	0.111711602		
"85+"	142691	22483	0.157564247		1		

Table 6-3. Abridged life table for England and Wales, females 1985

x	n	ASDR (nMx)	nax	nqx = n*nMx / (1+n*(1-nax)*nMx)	npx = 1-nqx	lx = l(x-1)-nd(x-1)	ndx = lx*nqx	nLx = n*(l(x+1)+ nax*ndx)	Tx = T(x+1)+nLx	ex = Tx/lx
0	1	0.008314	0.1	0.008252	0.991748	100000	825	99257	7756161	77.562
1	4	0.000408	0.4	0.001630	0.998370	99175	162	396311	7656904	77.206
5	5	0.000181	0.5	0.000905	0.999095	99013	90	494842	7260592	73.330
10	5	0.000187	0.5	0.000935	0.999065	98924	92	494386	6765751	68.394
15	5	0.000282	0.5	0.001409	0.998591	98831	139	493807	6271364	63.455
20	5	0.000307	0.5	0.001534	0.998466	98692	151	493080	5777557	58.541
25	5	0.000364	0.5	0.001818	0.998182	98540	179	492254	5284477	53.628
30	5	0.000566	0.5	0.002826	0.997174	98361	278	491111	4792223	48.721
35	5	0.000884	0.5	0.004410	0.995590	98083	433	489335	4301111	43.852
40	5	0.001445	0.5	0.007199	0.992801	97651	703	486496	3811776	39.035
45	5	0.002485	0.5	0.012348	0.987652	96948	1197	481746	3325280	34.300
50	5	0.004210	0.5	0.020831	0.979169	95751	1995	473767	2843534	29.697
55	5	0.007219	0.5	0.035455	0.964545	93756	3324	460470	2369767	25.276
60	5	0.012054	0.5	0.058507	0.941493	90432	5291	438932	1909297	21.113
65	5	0.018259	0.5	0.087310	0.912690	85141	7434	407121	1470365	17.270
70	5	0.029920	0.5	0.139189	0.860811	77707	10816	361497	1063244	13.683
75	5	0.049689	0.5	0.220993	0.779007	66891	14783	297500	701747	10.491
80		0.085545	0.5	0.352367	0.647633	52109	18361	214641	404247	7.758
85+		0.177987		1	0	33747	33747	189606	189606	5.618

<u>Lifetable functions are very important in demography.</u> Needed information is basically **ASDR (Age Specific Death Rates)**. Using fmsb package in R, it's easy to calculate life table as follows (included in code-chap6.R). **library (fmsb)**