Meta-analysis: the method of systematic review

- Very difficult. It requires very sophisticated manner of statistical thinking. You must pay substantial effort to learn. In this lecture, just a overview is given.
- The recommendable textbook (in Japanese) "メタ アナリシス入門: エビデンスの統合を目指す統計手法 " (Introduction to meta-analysis: the statistical technique to integrate various evidences), written by Dr. Toshiro Tango, Asakura-Shoten Pub., 2002.

Definition and history

- What "meta" means?
 - Something occurring later, more comprehensive, and is often used to name a new but related discipline designated to deal critically with the original one. (Egger et al., 1997)
- A statistical analysis to integrate the results of various previous studies found by systematic review. It should fulfill PRISMA statement [http://www.prisma-statement.org/]
 - Using academic literature database such as PubMed, Google Scholar and Web of Science, systematic keywords search enables to find the all appropriate papers.
 - By setting rigid inclusion and exclusion criteria, select all appropriate papers to get them in hand.
 - Read carefully all those papers, extract the data based on common criteria (all those processes have to be clearly described)
 - Conduct meta-analysis (such as forest plot, common odds ratio, funnel plot, ...) for the data, and find the common feature over all those studies (evaluation of heterogeneity is also needed)
- The trials to integrate or summarize the previously conducted studies are not new.
 - Sir Wright (1896) developed a new vaccine against typhoid fever and tested the effectiveness of the same vaccine in several different groups.
 - Karl Pearson (1904) re-evaluated the effectiveness of that vaccine ever used.

Karl Pearson's calculation

Data: http://minato.sip21c.org/Pearson1.txt

StudyName	RecovV	DiedV	TotalV	RecovNV	DiedNV	TotalNV
HospitalSA	30	2	32	63	12	75
GarrisonLadysmith	27	8	35	1160	329	1489
SpecialRegimenSA	63	9	72	61	21	82
SpecialHospitalSA	1088	86	1174	4453	538	4991
MilitaryHospitalSA	701	63	764	2864	510	3374
IndianArmy	73	11	84	1052	423	1475

- Calculate the tetrachoric correlation coefficients for each study (cf. http://www.personality-project.org/r/psych/R/tetrachor.R [File] -> [Load script file] -> select all and submit)
- tetrachoric(matrix(c(30,2,63,12),2,2)) gives 0.307
- Taking mean of 6 studies by mean(c(0.307,-0.010,0.300,0.119,0.194,0.248)) gives 0.193 Pearson concluded "The effects is too small to recommend the vaccine".

Using Odds Ratios for meta-analysis

- Each result can also be evaluated using odds ratio. For example, (30/2)/(63/12) gives 2.86. It means vaccination raised the viability 2.86 times at the first study. Using fisher.test(matrix(c(30,2,63,12),2,2)), the odds ratio is 2.83.
- [Statistical analysis], [Metaanalysis and metaregression], [Metaanalysis and metaregression for proportions]
- Estimated combined odds ratio is 1.77 in fixed effect model and 1.79 in random effect model (both statistically significant at 5% level). "No heterogeneity" is not rejected (p=0.235).
- Forest plot is very convenient to see.

Experimental		Control							
Study	Events	Total	Events	Total		OR	95%-CI	W(fixed)	W(random)
HospitalSA	30	32	63	75		- 2.86	[0.60; 13.58]	0.9%	2.1%
GarrisonLadysmith	27	35	1160	1489 ·		0.96	[0.43; 2.13]	4.9%	7.3%
SpecialRegimenSA	63	72	61	82		2.41	[1.02; 5.68]	2.9%	6.5%
SpecialHospitalSA	1088	1174	4453	4991		1.53	[1.21; 1.94]	50.1%	39.2%
MilitaryHospitalSA	701	764	2864	3374		1.98	[1.51; 2.61]	35.2%	34.3%
IndianArmy	73	84	1052	1475		2.67	[1.40; 5.08]	6.0%	10.7%
Fixed effect model		2161		11486	-	1.77	[1.50; 2.08]	100%	
Random effects mode	əl				-	1.79	[1.42; 2.25]		100%
Heterogeneity: I-squared=26.6%, tau-squared=0.0204, p=0.235									
					0.75 1.5				
					Odds Ratio				

Meta-analysis for covid-19

- http://dx.doi.org/10.1136/bmjopen-2020-039652
 - Using metafor package of R, estimating the latent period of covid-19 from 2 parameters of log-normal distribution.
 - The method is implemented as Shiny application https://mcaloon-ucd.shinyapps.io/shiny2/
- https://doi.org/10.1016/S0140-6736(20)31142-9