Water and Health

- Frumkin H [Ed.] (2010) Environmental Health: From Global to Local, 2nd Ed. Chap.15 "Water and Health" pp.487-555.(In 3rd Ed., Chap.16)
- KEY CONCEPTS
 - Critical for all forms of life on the earth
 - Human may threaten quality and quantity of water in many ways, then human health and the earth's health
 - Protecting our health needs to conserve water, reduce wastewater production, begin to recycle
 - US regulatory framework ensures the provision of safe drinking water to the public
 - Future risks to water resources and potential mitigation
- Other reference web pages
 - Grafton QR, Wyrwoll P, White C, Allendes D [Eds.] (2014) Global Water Issues and Insights. ANU Press. https://doi.org/10.26530/OAPEN_496490.
 - <World Water Council> https://www.worldwatercouncil.org/en
 - <WHO/Water sanitation and health> https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health https://www.who.int/health-topics/water-sanitation-and-hygiene-wash

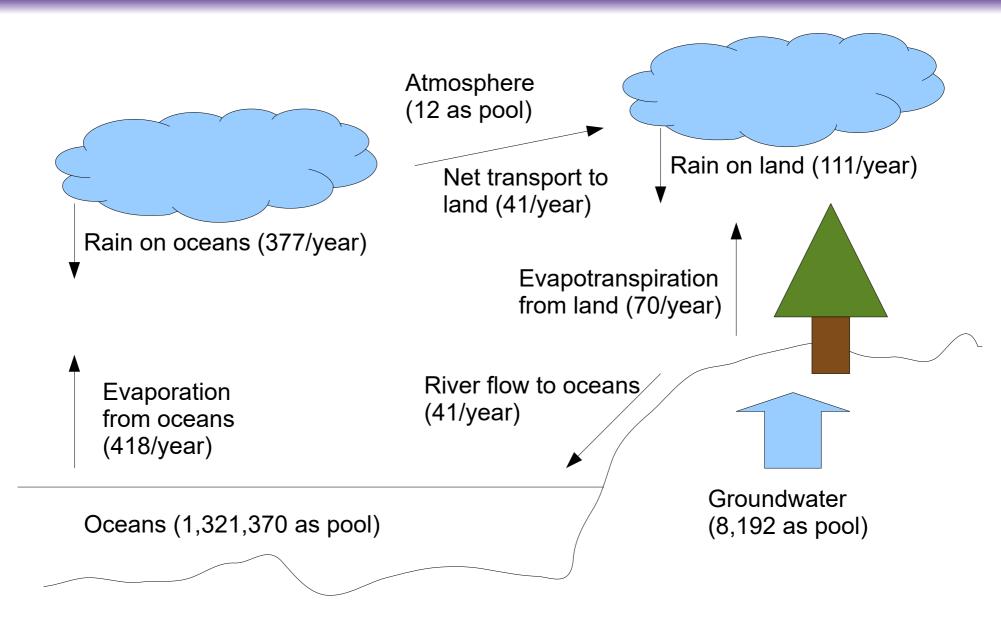
Role of water in life

- No water, no life
 - Human, animal, avian, reptile, amphibian, plant, microbe
 - Exceptional status is cryptobiosis (suspending metabolism)
 - Sleeping chironimid can survive for several months without water (losing 97% of its body water, but survive) (http://www.nias.affrc.go.jp/anhydrobiosis/Sleeping%20Chir onimid/e-index.html, see below)
 - Water bear is known to survive for several decades at tun stage (losing 37% of body water) (https://www.youtube.com/watch?v=qevUEILTq-o)
 - Searching for life on other planets begins from searching water
 - Humans are 60% water
 - cannot survive for more than a few days without water
 - Human culture has been restricted to the area with rich water supply by big rivers: Egypt, Indus, China, Mesopotamia

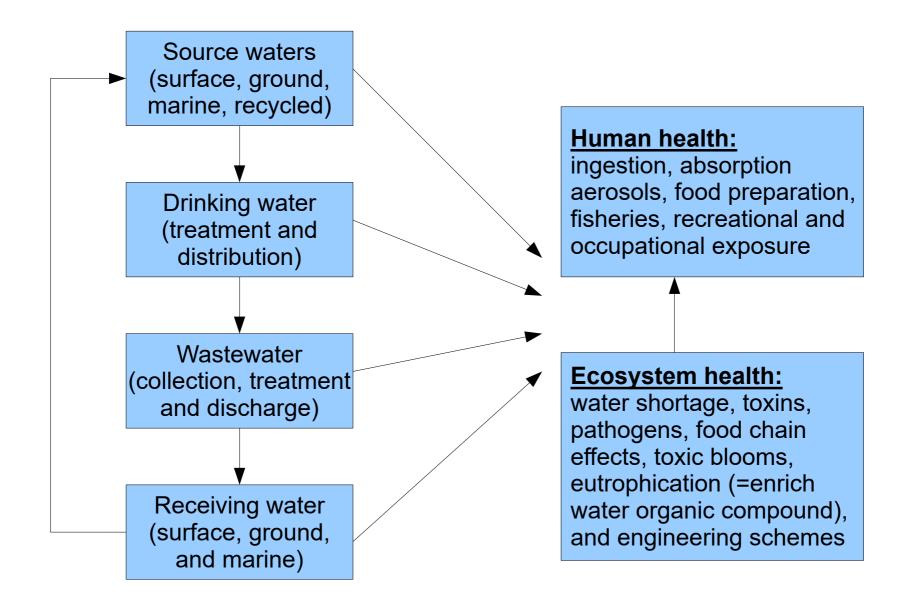
 Dessication

 Egg

 Adult


 Iarva

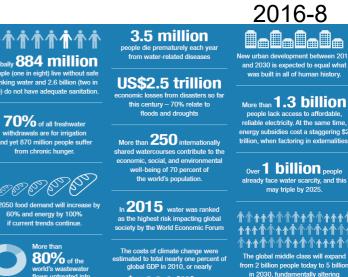
 Pupa


 Anhydrobiotic larva

 Water

Hydrologic cycle (unit: Tt)

Interconnections between water and health



Surface water vs groundwater

- Freshwater supplies (EPA, 2007)
 - Surface water: all waters naturally open to the atmosphere (rivers, lakes, reservoirs, ponds, streams, impoundments, seas, estuaries, ...)
 - Groundwater: the supply of fresh water found beneath the Earth's surface, usually in aquifers, which supplies wells and springs
 - Groundwater under the direct influence of surface water (significant occurrence of insects or other microorganisms, rapid shift of water characteristics)
- Humans can manage the water resource
 - Source water: highest quality for drinking water can reduce treatment cost, avoid contamination
 - Groundwater: traditionally considered as high quality because of percolation through soil, but not always due to human activities
 - In Bangladesh, part of India, China, Argentina, Chile, Mexico, and western USA, naturally contaminated by As.
 - Especially in Bangladesh, some water resources were developed by overseas aid as deep wells, which saved children from diarrhea, but caused skin discoloration and skin cancer by long-term exposure. **December 13, 2024**

World Water Council official publications

- Quadrennial report 2019-2022
 https://www.worldwatercouncil.org/en/publications/quadrennial-report-2022
- Triennal strategic framework 2023-2025
 https://www.worldwatercouncil.org/en/publications/triennal-strategic-framework-2023-2025
 - Vision and mission
 - Bring the international community together
 - Promote political action, advocacy and hydrodiplomacy
 - Promote water security
 - Organize the World Water Forum (in 2024, held in Bali, Indonesia)
 - Strategic orientations: a guiding framework > Aiming to further focus efforts on a number of thematic areas where the Council can offer significant added value during the period 2023-2025, involving key political actors from every level in each topic, enhancing communication.
 - Key thematic areas
 - Water security through a strong approach
 - Water for health and life
 - Financing water solutions
 - Water-related disasters
 - Cross-cutting activities
 - Engaging with key political actors
 - Strenthening communications and outreach
 - Involving our members and supporting their initiatives

\$700 billion

in 2 billion people today to 5 billion in 2030, fundamentally altering consumption patterns.

United Nations have addressed water issues

- Global population growth and economic growth increased water demand: basic human needs of safe drinking water, industrial and agricultural use.
- The United Nations Water Conference (1977), the International Drinking Water Supply and Sanitation Decade (1981-1990), the International Conference on Water and the Environment (1992) and the Earth Summit (1992) all focused on water.
- In 2003, UN declared "International Year of Freshwater" and established UN Water (https://www.unwater.org/).
- In 2005, UN General Assembly agreed on "International Decade for Action "WATER FOR LIFE" 2005-2015 (https://www.un.org/waterforlifedecade/)
- MDGs: Goal 7 [Target 7.C] "Halve, by 2015, the proportion of the population without sustainable access to safe drinking water and basic sanitation" was achieved in 2010
 - 91 per cent of the global population now uses an improved drinking water source
 - 2.6 billion people have gained access to an improved drinking water source since 1990
 - 96 per cent of the global urban population uses improved drinking water sources
 - 84 per cent of the rural population uses improved drinking water sources
 - 8 of 10 people still without improved drinking water sources live in rural areas
 - 42 per cent of the population of least developed countries gained access to improved drinking water sources since 1990
 - In 2015, 663 million people still lack improved drinking water sources
- SDGs: Goal 6 "Ensure access to <u>water and sanitation</u> for all" (https://www.un.org/sustainabledevelopment/water-and-sanitation/) Monitoring (https://www.sdg6data.org/en) Progress reports (https://www.unwater.org/publications/sdg-6-progress-reports) WHO/UNICEF JMP's global data (https://washdata.org/)
- SDG6 mid-term progress summary in 2024 → https://www.unwater.org/publications/summary-brief-mid-term-status-sdg-6-global-i eeds

SS	Winted Nations
ATO	In the propies of the propies of the propies (nearly 1 in 4 people around the world) WATER WATER Control of the propies of the pro
SUMMARY PROGRESS 2024: SDG 6 INDICATORS	CRAFTERMINATION Billion people lacked safely managed sanitation people practised open defecation, in 2022. A graduation (The works) addeparticipation the people lacked open of the people lacked o
9 9 0	Ball
4: SD	C332WATER QUALITY Software and the set of the
\$ 202	C4.1 From 2015 to 2021 water-use efficiency has increased by 19.3 % globally. Approximately efficiency, with less than 20 USD added value for each m3 of water used from all economic activities over time.
SESS	Approximately arclass and the global population lived in countries with bigh and critical water stress levels in 2021.
SOGF	UNITEGRATED WATER RESOURCES MANAGEMENT The world will not achieve sustainable water management until 2049. The world will not achieve for an achieve the world will not achieve sustainable water management until 2049.
Ч РF	Only 43 out of 153 UN Member States have operational arrangements for sharef rivers, lakes and aquifers. overling 90% or more the sharef rivers, lakes and aquifers. At least 20 countries lack any arrangements for sharing transboundary waters.
AAR	Koot bhan of ef 185 coefficient bran one or Koot blan of ef 185 coefficient bran one or the significant of the significant of the branch of the significant of the basis vertication. We found that the significant of the basis vertication of the significant of the basis vertication of the significant of the basis vertication. Second the significant of the basis vertication of the basis v
ž	6.6.1 INTERNATIONAL COOPERATION Aid disbursements to the 5% between 2015 and 2022. 1/3 poorly aligned with national water sector decreased by 5% and 2022.
SU	EXTINGUIZATION Less than 0 106 responding countries indicated having high levels of participation 1/3 by local communities in water and sanitation decision-making.

Water scarcity as one of the most critical health threats

- Water use may cause water scarcity
 - Long term view: the use of nonrenewable resource is finite; if resource extraction is faster than renewal, any resource supplies eventually cannot meet the demand -> both non-sustainable, like fossil fuels
 - If the water use increase faster than its renewal, the same situation as fossil fuels may happen → "Water Crisis" will occur
 - In arid regions: <u>aquifer recharge</u> are low ("aquifer" refers the soil zones containing rich water). Ogallala Aquifer in USA (ranging SD to TX): 448,000 km², provided 30% of all groundwater for irrigation in the USA, changed central plains of North America to rich farm, but it was <u>fossil water</u>, may deplete in the next 20-30 years.
 - Estimating reserved water in aquifer is needed. (cf. R package "reservoir")
- Population increase may cause water scarcity
 - Balance among water availability, population, the ways of water use
 - 27% of nations face <u>water stress</u> (available water per person < 1,700 t/year) by 2025 + 11% of nations face <u>water scarcity</u> (<1,000 t/year)
 - Zero available water in West Bank of Jordan, Seychelles -> import
 - Renewable freshwater supply per person: 10,527 t/year in USA, 1,787 t/year in Somalia
 - Annual withdrawal in USA: 1,654 t (46% industry, 41% agriculture, 13% home); Among home use (0.59t/day/person), only 0.2% for drinking
- Agricultural use may be a primal cause of water scarcity
- <GEOSS (in EU)'s movie> https://www.youtube.com/watch?v=-4MXeePC-d4
- https://www.youtube.com/watch?v=fLMn2P5q1ho
- https://www.youtube.com/watch?v=Fvkzjt3b-dU December 13, 2024

Political implications

- Food production depends on irrigation
 - Dr. Tetsu Nakamura said "One irrigation canal will do better than 100 doctors" (https://www3.nhk.or.jp/nhkworld/en/special/episode/201705060010/) (https://www3.nhk.or.jp/nhkworld/en/ondemand/video/2058552/)
 - Freshwater use is linked with food security, human nutrition, then well-being
 - Enormous political implications of water scarcity
 - Major rivers / aquifers cross international / state borders \rightarrow use by a nation/state affects downstream
 - Dams damage to downstream users
 - Political hot spots (See the next slide): Nile, Tigris/Euphrates, Indus/Beas/Sutlej/Ravi, Ganges/Brahmaputra, Jordan, Parana/Paraguay, Rio Grande, Colorado
 - "Resource Wars" may occur
 - Virtual Water (Hidden Water) issue
 - https://www.watercalculator.org/footprint/the-hidden-water-in-everyday-pr oducts/
- Global burden of waterborne diseases
- Safe drinking water needs \rightarrow treatment technologies , including chlorination (by-products should be paid attention)

Conflicts ("hot spots") due to water scarcity

(Frumkin's text 3rd Ed. Table 16.1; and WWF's website https://wwf.panda. org/our_work/water/rivers/

River basin	Length (km)	Countries	Sources of conflict	
Nile	6,693	Tanzania, Kenya, Zaire, Burundi, Rwanda, Ethiopia, Uganda, Sudan, and Egypt	Irrigation	
Tigris/Euphrates	1,840/ 2,700	Turkey, Syria, Iraq, and Iran	Hydroelectric projects, irrigation	
Indus/Beas/ Sutlej/Ravi	2,896 (Indus)	India, Pakistan, and Tibet	Diversions, Sikh vs Hundu	
Ganges/ Brahmaputra	2,507/ 2,900	India, Bangladesh, Nepal, and Bhutan	Deforestation and siltation, diversions	
Jordan	93	Israel, Jordan, Lebanon, and Syria	Diversions – arguably an underlying cause of Arab- Israeli conflicts	
Paraná/ Paraguay	3,998 (Paraná)	Brazil, Paraguay, Bolivia, Argentina, and Uruguay	Dams – hydroelectric	
Rio Grande	3,057	United States and Mexico	Development, irrigation	
Colorado	2,336	United States and Mexico	Development, irrigation	
$D_{\text{ocombor}} 13, 2024$				

Climate change and water

- Global climate change affects water
- Global warming cause the increase of evaporation from the oceans
 → increase of water vapor in the atmosphere
 - \rightarrow increase of precipitation \rightarrow more severe weather events
- Positive feedback loop (cf. hydrologic cycle)
- The burden of water scarcity may shift
 - Arid regions may benefit
 - Mountainous regions (depending on snowpack) may short
- Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. *Climatic Change*, 134: 371-385. https://link.springer.com/article/10.1007/s10584-013-0853-x
 - Based on 4 scenarios and 21 Global Climate Models (GCMs), Water Crowding Index (WCI) and Water Stress Index (WSI) were calculated.
 - The models estimated that 1.6 (WCI) and 2.4 (WSI) billion people live in watersheds exposed to water scarcity now.
 - Using WCI, A1B scenario, 0.5 to 3.1 billion people will be exposed to an increase in water scarcity by 2050.

Long-term water resource projection

Hejazi M, Edmonds J, Clarke L, Kyle P, Davies E, Chaturvedi V, Wise M, Patel P, Eom J, Calvin K, Moss R, Kim S (2014) Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technological Forecasting & Social Change, 81: 205-226. https://doi.org/10.1016/j.techfore.2013.05.006

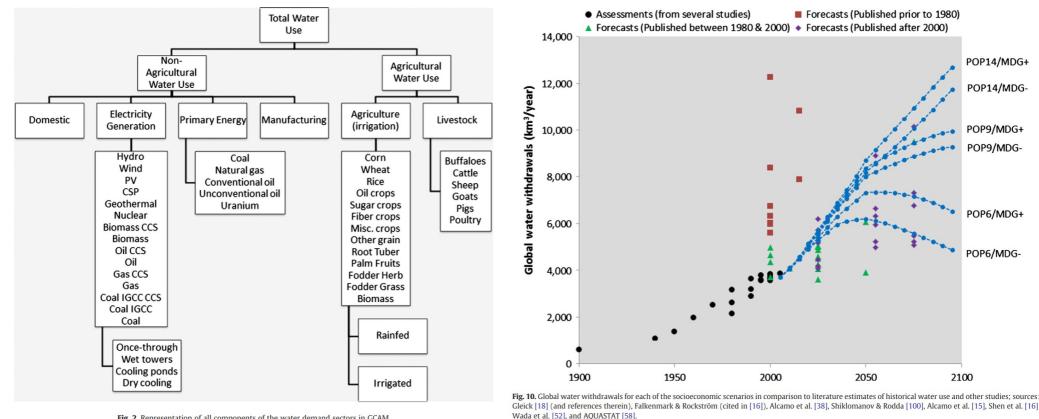
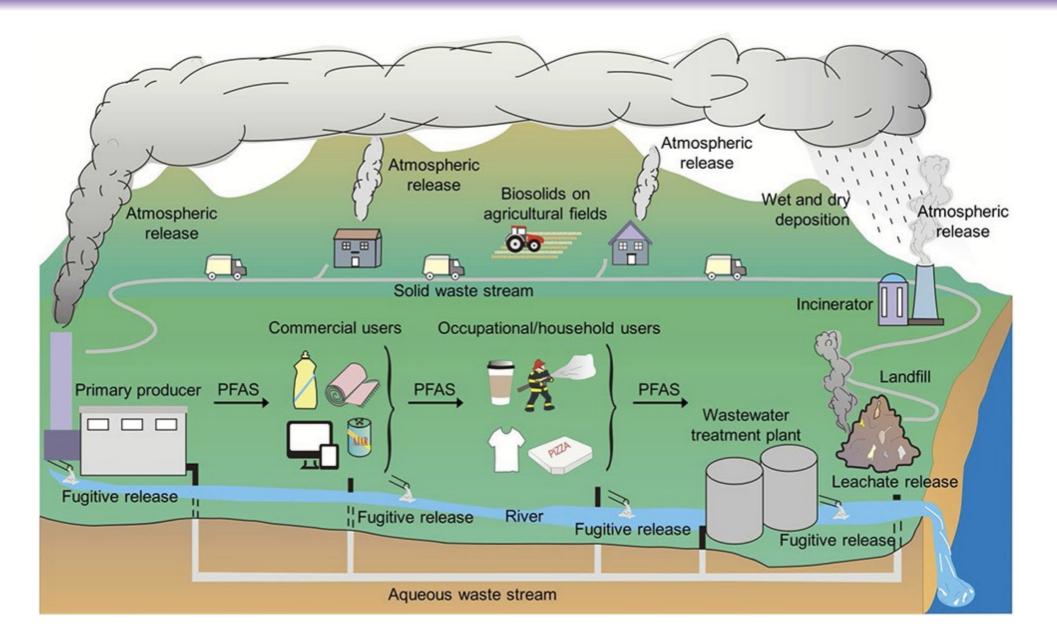
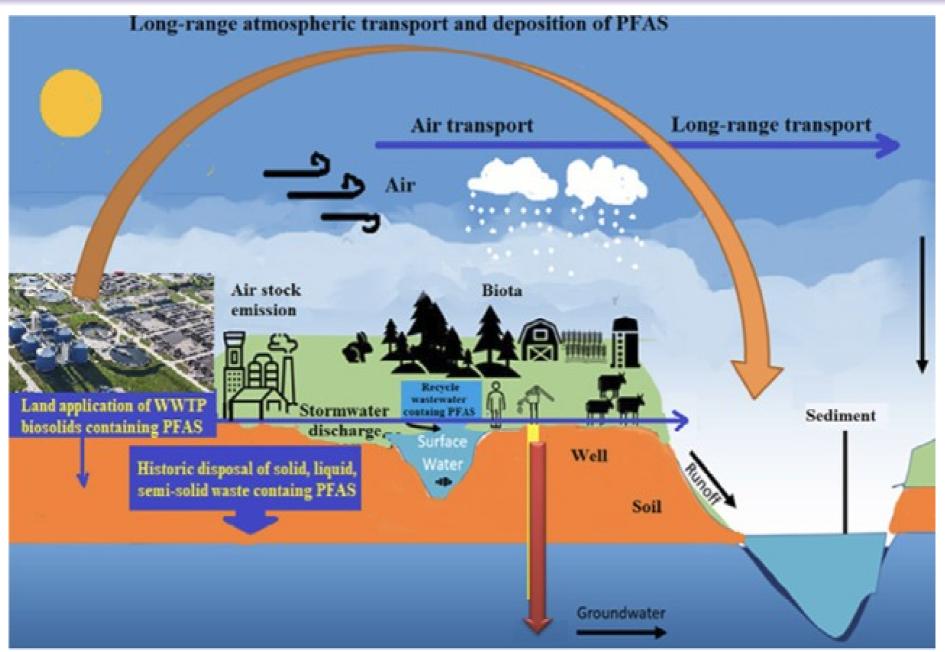


Fig. 2. Representation of all components of the water demand sectors in GCAM.


Human impacts on water

- Hydrodynamics (the way water moves) is dramatically altered by human activity (construction of dams, levies, canals, ...) → completely change the biology and chemistry of an ecosystem, sometimes eutrophication, oxygen depletion, massive fish die-out, cyanobacteria-derived toxins (microcystins: WHO's criteria, 1 µg/L) in drinking water (occurred in Lake Erie, USA; Caruaru city, Brazil: https://www.ncbi.nlm.nih.gov/pubmed/12505349)
- Engineering schemes resulted in large health effect
 - Dam and irrigation \rightarrow snails \rightarrow schistosomiasis
 - Hydroelectric \rightarrow methylation of Hg \rightarrow Hg overintake
 - Channelization \rightarrow extreme flood \rightarrow Huge economic loss
 - Draining → loss of wildfowl and fish → economic loss, long term effects on human may occur (unknown)
- Water contaminants
 - Chemical: (eg. As, Hg, Cd, Pb, PCB, oils, chloroform, salt) naturally (esp. N, F, As, salt) or artificially (esp. POPs incl. PFAS, radionuclides Pt, ¹³⁷Cs, ⁹⁰Sr) comes
 - Biological: (eg. bacteria, virus, protozoa) comes from many sources including human and animal wastes → waterborne disease outbreaks (eg. cryptosporidiosis, *E. coli* O157)
 - Deposition, storage, bioconcentration should be paid attention for both.


PFAS (Per-/Poly-FluoroAlkyl Substances)

- Contamination of drinking water (of course, source water such as river water and underground water) by
 organic fluoride compounds (so-called PFAS) has become a big issue in many countries.
- Water contamination
 - Tentative criteria of PFOA and PFOS in surface and underground freshwater
 - 50 ng/L in Japan (https://www.env.go.jp/content/000150400.pdf)
 - 40 ng/L in US-EPAhttps://www.epa.gov/newsreleases/epa-releases-pfas-groundwater-guidance-f ederal-cleanup-programs-fulfilling-pfas-action
 - 2-70 ng/L in EU (different by country)https://eeb.org/wp-content/uploads/2023/10/PFAS-in-drinkin g-water-briefing-final-1.pdf
 - In many countries, actual concentration in groundwater frequently exceeds those
 - In China, Japan, and South Korea, above the recommended level, In South and Southeast Asia, just below the recommended level, but rising https://doi.org/10.1016/j.envres.2021.111122
 - USA often exceeds the criteria https://doi.org/10.1038/s41370-023-00597-z
- Health effects of PFAS exposure have already been proved by meta-analysis.
 - PFAS exposure was positively correlated with estradiol in females and negatively with testosterone in males https://doi.org/10.1016/j.envres.2023.117553
 - Biomarkers showing liver damage correlated https://doi.org/10.1289/EHP10092
 - Correlated with kidney cancer https://doi.org/10.23749/mdl.v114i5.15065
 - Negatively correlated with fecundability https://doi.org/10.1016/j.envres.2022.114718
- Toxic effect is magnified in coupling with microplastics (*Daphnia magna* experiment)
 Soltanighias T et al. (2024) *Env. Pollut*. 363, 125133. https://doi.org/10.1016/j.envpol.2024.125133

PFAS lifecycle https://doi.org/10.1126%2Fscience.abg9065

Global contamination occurs https://doi.org/10.1016/j.scitotenv.2021.151003

December 13, 2024

Sanitation systems (Frumkin's text 3rd ed.)

Figure 16.4 Sanitation Options

Source: Diagrams reproduced from Franceys, Pickford, & Reed, 1992. © World Health Organization.

Idealized sanitation system (Frumkin's text 3rd ed.)

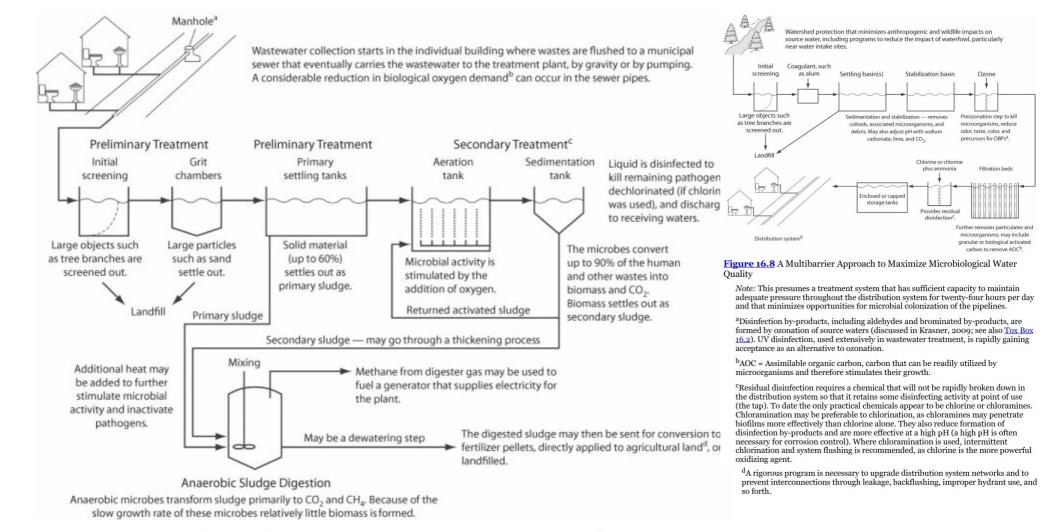


Figure 16.5 An Idealized Wastewater Treatment System, Based on Boston's Deer Island System

Treatments for drinking water

- Simple, low-cost treatments
 - [Safe water system] Bleach, storage vessel, and behavior change; pathogen removal by NaOCI (sodium hypochlorite)
 - [Flocculant / disinfectant] P&G Purifier of Water: Ca(OCI)₂
 - [Ceramic water filters] Variety of types, colloidal silver and also copper
 - [Biosand filter] Absorption / competition
 - [Boiling] Sterilizing (inactivating microorganisms) by high temperature
 - [Solar water disinfection] UV and temperature
 - [Llaveoz] UV
 - [LifeStraw] lodine and silver
 - [Sari cloth] Prefilter for particles and pathogen hosts (eg. copepods)
 - [The drinkable book] Filtration (each page is a readable filter)
 - [C-L γ-PGA from Natto] Flocculation and precipitation (https://doi.org/10.1263/jbb.99.245; https://ja pan-product.com/ads/nippon-poly-glu-co-ltd/)
- Approaches to disinfection / Issues like by-products (eg. chloroform, bromate, chlorite, ...)
 - [CI = Chlorination] Retains a residual; strong disinfectant / Taste, odor, toxicity
 - [Chloramine] Retains a residual; penetrate biofilms more effectively than free chlorine / Weaker disinfectant, by-products
 - [Chlorine dioxide] Powerful disinfectant; no by-products / Toxic, not stored, no residual, expensive
 - [Ozone] Powerful disinfectant; kill Cl-resistant microbes (eg. Cryptosporidium) / Expensive
 - [UV (pulsed)] Short time; no toxic by-products / no residual; not effective for high turbidity water
 - [Solar] Simple and readily available supplies / Small scale; slow; potential chemical leaching from PET bottles; low cost