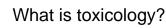

Environmental Health (3): Toxicology

- Key concepts
 - · Interdisciplinary field: studies adverse effects of chemicals on biological systems
 - All substances are potentially toxic (likelihood of human exposure is important)
 - · Route of exposure is important
 - · Structure of a chemical implies the relative level of toxicity and selectivity
 - · Metabolic pathway modifies chemical form of substance, subsequently its toxicity
- · Basic toxicology testing is critical to risk assessment


10/14/2015

Intra-body kinetics

- Whether a chemical substance has toxic effect or not depends on (1) sensitivity of host organ, and (2) concentration of the substance there
 - The concentration depends on intra-body kinetics composed of 4 factors (Absorption, Distribution, Metabolism. Excretion)
- · Critical concentration: lowest concentration to harm tissue
- Target organ: the first organ where the substance accumulates up to critical concentration
- The highest concentration is not necessarily seen in target organ, because the sensitivity varies by organ

- Paracelsus (1493-1541, Physician, Alchemist) is called as "The father of toxicology"
 - "Alle Ding sind Gift und nichts ohn Gift: alein die Dosis macht daß ein Ding kein Gift ist" ("All things are poison and nothing is without poison; only the

dose makes a thing not a poison")

- · Definition: The scientific research to clarify the safety to human health of drugs and chemical substances.
- · Core problem in medicine: any drug has both therapeutic and adverse effect on human body, which widely varies.
 - · Flu drug, to cause liver failure for 10% of users, is not acceptable. If new cancer drug can cure 80%, it is acceptable even if it causes weak adverse effect for everyone 2

10/14/2015

1

Secretary

7

organ

Mill

Biological protection system

- Via immune system
 - non-specific: phagocytosis (neutrophil, monocyte, macrophage), attack to cancer/virus infected cells (NK cell). natural immunity (IgM)
 - specific: acquired immunity (B, Helper/Killer T cells)
- · Via non-immune system
 - enzymatic catabolization: fat-soluble -> water-soluble
 - metallothionein: induced by Cu. Zn. Cd (MW 6-7K)
 - superoxide elimination system: SOD, GPx, Catalase
- DNA repairing enzyme non-specific specific Infectious agent Bio-molecule (high MW) Chemical substance (low MW)

Cd-metallothionein 5

Target organs of toxicity

accumulation system

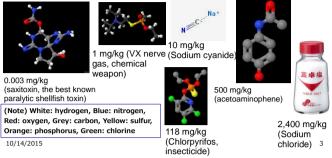
Cadmium (Cd)

Barrier b

10/14/2015

- Chronic exposure -> Itai-itai disease (affecting bone)
- Most cadmium accumulates liver, subsequently kidney; thus target organs are them
- Lead (Pb): hematopoietic system (bone marrow) -> decrease of hemoglobin and increase of reticulocytes
- Paraguat: lung

10/14/2015


· Inorganic arsenic (As): No mutagenecity but carcinogenecity, probably inhibiting macrophage/NK cells

Lethal Dose 50 (LD50) of various substances

- Definition: the dose which kills a half of administered animals (mouse/rat) within a study period, in mg/kg body weight.
- · The most popular indicator of acute toxicity of substances.

Absorption pathway

via astrointestinal tract

- · most materials absorbed from gastrointestinal organs go through portal vein to liver, then are metabolized
- · in mucosa of oral cavity, tongue surface, and mucosa of lower rectum, materials are directly absorbed
- stomach easily absorb fat-soluble/acidulous substances

via **lung**

- alveoli absorbs air pollutants
- some materials (eg. mercury) are more effectively absorbed as vapor from lung than as liquid from gastrointestinal tract

via skin

- usually low absorption efficiency due to simple diffusion
- exceptions: sarin, tetrachlorocarbon, paraguat (herbicide)
- 10/14/2015

10/14/2015

Distribution

- · Distribution in the body differs by substances
 - DDT, thiopental accumulates to fat tissue
 - · Inorganic mercury is more distributed to kidney, secondly liver and spleen, but methylmercury are equally distributed to any organs (incl. brain, fetus)
 - Cadmium accumulates liver and kidney (not in bone)
- · Why differs by substances?
 - · Host factors: various blood flow to each organ, tissue barrier (BBB, BPB)
 - Material factors: MW, fat-solubility, binding capacity with blood elements and tissue cells
 - fat-soluble substances have longer biological half-life

Metabolism

10

- Catabolization basically increases the excretion by increasing the polarity
- Basically reducing toxicity, but rarely the metabolic products have higher toxicity (metabolic activation)
- · Stages of metabolic reaction
 - 1st phase: Increasing polarity by oxidation, reduction, or hydrolysis. In liver, most active. a kind of heme-proteins, <u>cytochrome P450</u> in hepatic microsome is most important in oxdation
 - 2nd phase: Cohesion with endogeneous substances like glucuronic acid, increasing ability of excretion
- 3rd phase in excretion

10/14/2015

Classification of toxicity

- · General toxicity (in terms of period to expression)
 - Acute: single exposure cause a toxic response within a short latent priod. Evaluated with LD50, LC50
 - · Subacute: 1-3 months repeated exposures cause it.
 - · Chronic: several months to a year exposure cause it.
 - · Intergenerational: expression in the next generation
- · Special toxicity (in terms of toxic responses)
 - · Carcinogenecity: initiation / promotion
 - · Mutagenecity: causing the mutation of genes
- Misc.
- Reproductive toxicity, Neurotoxicity, Immune-toxicity, etc.

Reference doses (RfD)

16

- ADI (acceptable daily intake): For the substances to be intentionally used by human-beings, the daily intake level may have no risk even the human continue to have that level
- TDI (tolerable daily intake): For the substances which are not intentionally used but taken as environmental pollutants, the daily intake level cause no risk even the one continue to have that level
- · Units are mg/kg body weight/day
 - NOAEL/NOEL/LOAEL for the most susceptible animal experiment are devided by safety factor (for ADI) or uncertainty factor (for TDI). Usually the factors are 10.

Enzymes	Molecules	Substrate (external toxin)	Frequencies of deletion type	Effects of deletion
Cytochrome P450	CYP2C19	Mephenytoin, etc.	3% of Caucasian 20% of Japanese	More adverse effect
Alcohol dehydrogenase	ADH1	Ethanol	4-20% of Cauc. 90% of Japan.	More aldehyde production
Aldehyde dehydrogenase	ALDH2	Acetoaldehyde	Rare in Cauc. 40% of Japan.	"Flusher"
N-acetyl transferase	NAT2	Isoniazid (anti- tuberculosis)	60% of Cauc. 12% of Japan.	More adverse effect
Glutathione-S transferase	GSTM1, GSTT1, GSTP1	Epoxide	GSTM1=50%, GSTT1=38%	Cancer induction by smoking
UDP-glucuronide transferase	UGT1A1	Bilirubin	?	Crigier-Najjar syndrome
Thiopurine-methyl transferase	TPMT	Anti-leukemia, immunosuppr.	Deletion-homo 0.2-0.3% Cauc.	Suppression of bone marrow
10/14/2015				11

Evaluation of toxicity

Target

- human
- · experimental animal
- Types of testing (cf. OECD guideline)
 - Acute oral test: observe 2w after admin, sectio, LD50
 - · Subacute: everyday admin 2-4w, sectio, NOEL
 - Chronic: Rodent+Non-rodent, at least 1yr repeatedly, NOEL, ADI, TDI
 - Misc: Carcinogenic test, Mutagenic test, Biomonitoring, etc.

10/14/2015

10/14/2015

Dose-Response Relationships

14

- The responses of host animals may change with the dose.
- In population level, the proportion of responded animals changes with dose (toxic load). The relationship is usually S-shape. Approximated with cumulative logarithmic normal distribution.

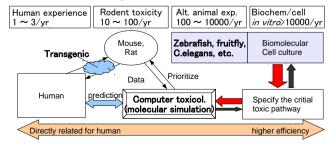
Probit: $F^*(X_i) = \Phi(\beta_0 + \beta_1 X_i), \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ Logit: $F^*(X_i) = \Lambda(\beta_0 + \beta_1 X_i), \Lambda(z) = \frac{e^z}{1 + e^z}$

- The dose to make 50% respond is ED50
- The dose to kill 50% is LD50
- · ED50 or LD50 is estimated by probit/logit analysis.

- Mainly from Kidney and Liver
- Excretion to urine: 25% of blood -> glomerulus -> 20% filtration (<MW 60000)
- Excretion to bile: from liver. Higher polarity materials are directly excreted into feces, lower polarity materials are cohesively coupled with glutathione or glucronic acid (after reabsorption from intestine; enterohepatic circulation), then conveyed to bile with transporters like MRP2 (Phase III)
- Other pathways of excretion: Intestine (PCB, DDT, etc.), Breastmilk (fat-soluble substances), breath, skin, saliva, tears

10/14/2015

Indicators of toxicity


- Acute toxicity
 - LD50: lethal dose 50 = amount to kill a half
 - · LC50: lethal concentration 50 = concentration to kill a half
 - ED50: effective dose 50 = amount to affect a half
- With threshold
 - · Less than threshold, no toxic effect
- Without threshold
 - Within the tested doses, maxium dose with no observable effect is
 NOEL (or NOAEL for adverse effect)
 - The level should be adjusted by safety factor or uncertainty factor for the possible effect in the larger population or genetic variation
- Virtually Safe Dose (VSD): setting the acceptable risk level. The amount to cause less risk than that is to be acceptable.
 10/14/2015

Future Perspectives of Toxicity Testing

15

 Source: Collins FS, Gray GM, Bucher JR: Transforming environmental health protection. Science, 319: 906-7, 2008.

17

