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Application of simple mathematical model (1)
● Figure 12-1 is an example of 

simple linear regression.
● The 2 primary purposes of 

models in epidemiology → 
Different models should be 
applied (though many courses 
in statistics may not distinguish 
those).
– 1. To make prediction

● Estimating the risk (or 
other epidemiologic 
measures) based on 
information from risk 
predictors.

– 2. To control for confounding
● Aiming at learning about 

the causal role of few 
specific factors for 
disease, simultaneously 
controlling for possible 
confounding effects of 
other factors.

Cig/d 0 5 15 30 50

ASMR 0.6 3.0 5.4 10 15



Application of simple mathematical model (2)
● Figure 12-1 shows almost perfect linear regression.  

Regression line means that estimated average values for 
the variable on the vertical scale (Y) according to values of 
the variable on the horizontal scale (X) in the form of:

● Y-hat is the estimated value of Y for any given values of X.  
The a

0
 is the intercept and a

1
 is the coefficient of X, which 

means the slope (= the number of units of change in Y-hat 
for every unit change in X).  The intercept 1.15 (/100000) 
means the age-standardized mortality rates in the absence 
of cigarette smoking.  According to the raw data, it was 0.6 
(/100000) in the absence of smoking, slightly different from 
the estimated 1.15, which uses all five data points.

● The slope 0.282 means the increment of deaths per 
100000 for every additional cigarette smoking daily.

● Assuming that confounding and other biases were properly 
addressed, the slope quantifies the effect of cigarette 
smoking on laryngeal cancer.  The line also gives estimate 
of mortality rate ratios.  Age-standardized mortality rate 
of 15.2 (/100000, which is 1.15 + 0.282 x 50) for 50 
cigarettes daily is 15.2/1.15 = 13.3 times larger than the 
rate in nonsmokers.



THE GENERAL LINEAR MODEL
● Models with more than 1 factor at a time can be used as an alternative to 

stratification to control confounding.
● As extension of linear model of Figure 12-1,

● Y is dependent variable.  X
1
 and X

2
 are independent variables.

● Suppose that Y is the age standardized mortality rate of laryngeal cancer in 
Figure 12-1, and that X

1
 is the number of cigarettes smoked per day, then X

2
 may 

be the amount of alcohol consumed per day (Alcohol drinking is also risk of 
laryngeal cancer): The multiple regression line can be drawn in 3D space.

● Since cigarette smoking and alcohol drinking are correlated and thus those are 
mutually confounding risk factors for laryngeal cancer.

● A stratified analysis can remove that confounding, but the confounding can also 
be removed by fitting [12-1].  The coefficients for X

1
 and X

2
 (= a

1
 and a

2
, 

respectively) are unconfounded.  Such multiple linear regression is still 
possible by using lm() in R.

● The general form of [12-1] is “general linear model”, as shown next.



TRANSFORMING THE GENERAL 
LINEAR MODEL

● Dependent variable in a regression model is not 
mathematically constrained.

● However, in actual study, the range of variable is 
constrained by many ways
– FEV1 (Forced expiratory volume in 1 sec, a 

measure of lung function) cannot take 
negative value.

– Disease occurrence (no/yes) is usually 
assigned a value of 0/1.  To avoid getting 
impossible values (eg., negative mortality 
rate) for the dependent variable, fit straight 
line to the logarithm of the mortality rate is 
possible, as [12-2], where ln(Y-hat) is natural 
logarithm of Y-hat.  By taking antilogarithm of 
[12-2], [12-3] is obtained.  This is exponential 
model, a kind of general linear model.

– In linear model, effect of exposure is simply 
obtained as the difference of Y-hats for X=0 
and X=1, it’s the slope of the regression line.

– In exponential model, the ratio of Y-hat (rate 
ratio of exposed to unexposed persons) is 
antilogarithm of the coefficient.



THE LOGISTIC TRANSFORMATION
● If risk data is obtained, the range is much 

narrower.  Rates are never negative but 
can go as high as infinity, but risks range 
[0, 1].

● Converting [0, 1] to (-∞, ∞) is possible by 
logistic transformation.

● Risk odds, R/(1-R), range [0, ∞).  Then 
take logarithm, it ranges (-∞, ∞).

● ln[R/(1-R)] is a “logit” of R.  This 2 step 
transformation is logistic 
transformation.

● The logistic model is that the logit of R is 
dependent variable of a straight line 
equation as [12-4].  If independent 
variable is more than one, it becomes 
“multiple logistic model”.  The ratio is 
equal to the logarithm of the risk-odds 
ratio as [12-5].  The result means that, in 
the logistic model, antilogarithm of the 
coefficient of a dichotomous exposure 
term estimates the odds ratio of risks.



CHOICES AMONG MODELS
● From a practical standpoint, the transformations dictate 

what type of measure the coefficients in the model will 
estimate.
– For risk data, the logistic model will provide odds ratio, 

not easily get the estimate of risk difference.
– The model is used to assess the risk for people, invalid 

(negative or more than 100%) estimates has to be 
avoided.

– The model is used to assess the overall effect of 
exposure and the ratio can be taken as effect 
measure, logistic model is appropriate.

● Consider the data in Table 12-1 (hypothetical risk data over 
5 year period for 20 subjects with different ages ranging 
from 18 yrs to 77 yrs).
– If linear model is applied (Figure 12-2), the value of the 

intercept -0.49 is impossible value for a risk (all ages 
less than 24 or greater than 74 yrs give impossible 
estimates of risk).

– If logistic model is applied (Figure 12-3), direct 
estimation of a risk difference is impossible, but an 
odds-ratio associated with a 1-year increase in age is 
exp(0.144)=1.16 (by R, it’s 1.15500…)

● The logistic model is particularly appropriate for the 
analysis of case-control studies.  Odds ratio can be 
obtained from case-control studies and used as an 
estimate of rate ratios if control is sampled adequately.



CONTROL OF CONFOUNDING WITH 
REGRESSION MODELS

● Multiple regression models can control several confounding variables 
simultaneously.

● As explained in Chapter 10, stratified analysis tends to require large sample size.  
Five confounding variables, each of which had 3 categories, generates 
3x3x3x3x3=243 strata.  To keep enough sample size within each stratum, total size 
becomes very large.

● Multiple regression modeling solves this problem, though the results from the 
regression model are readily susceptible to bias if the model is not a good fit to the 
data.

● Figure 12-4 and 12-5 show hypothetical data, with data for exposed and 
unexposed people by age and by some unspecified continuous outcome measure. 
 Unfortunately, there is no overlap in the age distributions between exposed and 
unexposed.

– Stratified analysis would produce no estimate of effect (No information in the 
data)

– Multiple linear regression with both age and exposure terms, which fit two 
parallel straight lines through the data, can show the difference in the 
outcome between exposed and unexposed as the coefficient for the exposure 
term (Figure 12-4).  Regression model produces a statistically stable estimate 
from the nonoverlapping sets of data.

– However, the relation between age and outcome may be curvilinear (Figure 
12-5).  If so, the effect measure from multiple linear regression is incorrect.  
And, we cannot know whether the model in Figure 12-4 is appropriate or 
the model in Figure 12-5 is appropriate.

● If we have such nonoverlapping data, saying nothing is better than saying 
something incorrect.  The result of stratified analysis is more reliable.  By stratified 
analysis, the researcher and reader can see the distribution of the data by the key 
variable.  Thus, the multiple regression analysis should be used only as a 
supplement to a stratified analysis.

● Multivariate model looks sophisticated and thus it’s a lure, but often leads to 
mistake.



PREDICTING RISK FOR A PERSON
● Regression model is used to predict individual’s outcome.
● Murabito et al. (1997)

 [https://www.ncbi.nlm.nih.gov/pubmed/9236415] 
– Logistic model for 4-year risk estimates for intermittent 

claudication (the symptomatic expression of 
atherosclerosis in the lower extremities), shown in Table 
12-2.

– Getting individual risk estimates from this model, 
coefficient for each variable in the table is multiplied by 
the values for a given person and summed up, which 
gives logit for a given person.  Then take exponential, 
risk-odds (R/(1-R)) is obtained.

– Odds = Risk/(1-Risk) ↔ Risk = Odd/(1+Odds)
– Then Risk is exp(logit)/[1+exp(logit)]
– The 4-year risk of intermittent claudication for a 70-year-

old nonsmoking man with normal blood pressure, 
diabetes, coronary heart disease and cholesterol level 
of 250 mg/dL is obtained as

– logit  = -8.915 + 1x0.503 + 70x0.037 + 0x0.000 + 
1x0.950 + 0x0.031 + 250x0.005 + 1x0.994 = -2.628

– Risk = exp(-2.628)/[1+exp(-2.628)] = 0.067
– If the man had stage 2 hypertension, logit is -1.830 and 

Risk is 0.138.
● The purpose of including each individual term in the model in 

Table 12-2 is to improve the estimate of risk.
● Age nor presence of CHD is not a causal factor in this model, 

both are good predictors of the risk, it makes sense to 
include them in the prediction model.

Table 12-2. Logistic model to obtain estimates of 
4-year risk for intermittent claudication

Variable Coefficient

Intercept - 8.915

Male sex 0.503

Age 0.037

Blood pressure

 Normal 0.000

 High-normal 0.262

 Stage 1 hypertension 0.407

 Stage 2 hypertension 0.798

Diabetes 0.950

Cigarettes / day 0.031

Cholesterol (mg/dL) 0.005

Coronary heart disease 0.994

https://www.ncbi.nlm.nih.gov/pubmed/9236415


STRATEGY FOR CONSTRUCTING REGRESSION 
MODELS FOR EPIDEMIOLOGIC ANALYSIS

● Centering of variables in regression models (box, 
p.223)

– The intercept in a regression model is the 
predicted outcome when all independent 
variables are 0.

– If 0 is not meaningful predictor, centering 
(convert the predicting variable around some 
central value) should be done.

● (eg.) Regression to predict mortality rates 
from BMI, BMI=0 makes no sense.  Let the 
independent variable as (BMI – 22) instead 
of BMI itself, intercept is much more 
interpretable.

● Determine which confounders to include in the model
– First, all potential confounders are included
– Then, build a model by introducing predictor 

variables one at a time.  After each term is 
introduced, examine the amount of change in the 
coefficient of the exposure term.

– If the exposure coefficient changes considerably 
(usually 10%), then the added variable is a 
confounder.

– It’s essential for the exposure to be included in the 
model as a single term (included as several terms 
or product terms should be avoided).

● Do a stratified analysis first
– The first step of the analysis  should be 

a stratified analysis.
– Multivariable regression analysis 

contributes to causal research by 
enabling the simultaneous control of 
several confounding factors.

– Usually the confounding stems from one 
or two variables and a multivariable 
regression model will give essentially the 
same result as a properly conducted 
stratified analysis

● Stepwise models in epidemiologic analysis (box, p.234)
– Automatic selection based on statistical 

significance of each coefficient
– It may be valuable as prediction model
– For causal inference, using statistical significance 

for model selection must be avoided.
● Amount of confounding depends on the 

relation between the potential confounder 
and the exposure and the relation between 
the potential confounder and the outcome.  
Evaluation of coefficients only targets the 
latter.

● It may also omit confounding variables for 
which the relation with outcome is not 
statistically significant.



STRATEGY (cont’d) – Estimate the shape 
of the exposure-disease relation

● If the exposure variable is dichotomous, the effect of 
exposure is simply estimated as the coefficient, but if the 
exposure is continuous, redefinition of exposure is needed.

– If the model involves a logarithmic transformation, a 
single term for a continuous exposure variable 
mathematically takes the shape dictated by the model.

– In a logistic model, the exposure coefficient is the log of 
odds ratio for a unit change of exposure.  The effect of 
the unit increase multiplies the odds ratio by a constant 
amount.  The result is an exponential dose-response 
(Figure 12-6).

– Regardless of the actual shape of the relation between 
exposure and disease, the exponential shape fits the 
data if the exposure variable is continuous and included 
as single term in a model using a logarithmic 
transformation.

– In linear models, a linear relation is guaranteed.
● The shape of dose-response relation can be determined by 

data in several ways.

● Spline regression
– Using curve-smoothing like 

spline, a different fitted curve to 
apply in different ranges of the 
exposure.

● Avoiding to let the model determine 
the shape of relationship between 
exposure and disease is important.

● Factoring the exposure
– Categorizing exposure into ranges and then 

creating a separate term for each subrange of 
exposure, except for reference category.

– (eg.) Cigarette smoking can be categorized as 
zero/d, 1-9/d, 10-19/d, … According to the extent 
of smoking, each smoker can be categorized one 
of those categories (each category except 0 is 
treated as a dummy variable).  Resulting set of 
coefficients in the fitted model indicate a 
separately estimated effect for each level.

● Evaluate interaction
– To evaluate interaction, redefinition of the two 

exposures by considering them jointly as a 
single composite exposure is needed.

– For two dichotomous exposure variables A 
and B, each person falls into one of the four 
categories, exposed to neither (as 
reference), exposed to A but not B, exposed 
to B but not A, exposed to both.

– By doing so, partitioning the risk or risk ratio 
among those with joint exposure to two 
agents into the four categories as explained 
in Chapter 11. 



OVERFITTING OF REGRESSION MODELS 
AND SUMMARY CONFOUNDER SCORES

● Advantage of 
regression model is the 
ability to control 
simultaneously for 
several confounders

● One way to avoid overfitting 
is to use the summary 
confounder score.
– Disease risk score
– Exposure summary score 

(= propensity score)

● Rule of thumb: At least 10-
15 observations for every 
term are needed.

● If less than that, overfitting 
may occur.  The model is 
too heavily influenced by 
random error in the data.

● Trimming of the subjects 
outside the range of 
propensity scores that is 
common to both 
exposed and unexposed 
subjects (Figure 12-7)



Example of the use of propensity scores: Are drug-
eluting stents better than bare-metal stents?

● Mauri et al. (2008) New England Journal of Medicine, 359: 1330-42.
(https://www.nejm.org/doi/full/10.1056/NEJMoa0801485)

● Commented by many researchers including Rothman
(https://www.nejm.org/doi/full/10.1056/NEJMc082174)

● Using the summary confounder score is popular in pharmacoepidemiology.  Mauri et al. (2008) studied the 
comparative safety of two different kinds of stents (tubular wire cages used to keep arteries patent after narrowed 
vessels have been widened by angioplasty).

– Acute myocardial infarction adult patients at one hospital during 18 months got stenting surgery, followed up2 
years after stenting

– Comparison between bare-metal stents and drug-eluting stents (to prevent scar tissue formation within the 
artery walls), but some characteristics differed between the patients receiving the two groups.

– Each patient with drug-eluting stent was matched with a patient with bare-metal stent by propensity score.  
Though there should be no difference in risk of death within 2 days after stenting between 2 stents,  2-day risk for 
receiving bare-metal stent (1.2%) was almost double of that for drug-eluting stent (0.7%).

– Unfortunately, the authors incorrectly focused on the lack of statistical significance of the difference in 2-day risk 
of death.  The P value was 0.06 (statistically “not significant”), but using statistical significance to assess the 
difference is a poor approach.

– The size of imbalance in risk factors and how much it biased the final results were larger problem.
– After control of confounding, the authors found that the 2-year risk of death was 10.7% among patients with drug-

eluting stent and 12.8% (20% greater than 10.7%) among those with bare-metal stent.  But it ignored residual 
confounding (the 2-day risk of death was almost double in bare-metal stent).  If the confounding affected higher 
risk of death within 2-days after stenting persisted for the following 2 years, 20% difference may be caused by 
such unmeasured confounding.  Thus the conclusion by Mauri et al. was wrong.  Using proportionality of the 
risks as an adjustment factor, 73% higher risk of bare-metal stent observed within 2 days after stenting, but 20% 
higher risk of bare-metal stents for 2 years.  If 73% higher risk is caused by unmeasured confounding, bare-metal 
stenting is considerably safer.  After using the ratio of risks over the first 2 days to adjust the risk ratio at 2 years, 
2-year risk ratio can be converted to a risk difference (with simple assumptions), the conclusion is that bare-metal 
stent patients had an absolute risk of death actually 4.4% lower over 2 years than drug-eluting stent patients.

https://www.nejm.org/doi/full/10.1056/NEJMoa0801485
https://www.nejm.org/doi/full/10.1056/NEJMc082174


Variable matching ratios, confounding, 
and trimming (box, p.229-30)

● In cohort study of treated and untreated patients, there may be substantial 
confounding by indication.

● Matching the two cohorts by their propensity scores is one solution.
● Variables in the propensity score model should be adequately controlled in the 

comparison between the treated cohort and the individually matched untreated 
cohort.  It also automatically achieves trimming (Figure 12-7).

● Unmatched subjects are omitted from analysis, loss of information.  In stratified 
analysis or regression model, they can be used.

● By matching all unexposed persons who have approximately the same 
propensity score with each exposed person, loss of information can be reduced.  
But by doing so, showing a simple table of balancing treated and untreated 
subjects for each variable becomes impossible.

● Instead, the two-step process is possible.
– First, select matched pairs (using a fixed matching ratio) to produce a table 

showing balance for individual variables in the propensity score model
– Second,  add back into the data those subjects who could have been 

matched but were excluded to keep the matching ratio to a value of 1 to avoid 
loss of information.

● The process mentioned above is possible for cohort study, but causes bias in 
case-control study.



SUMMARY OF CHAPTER 12

● Regression model is useful for predicting risk and 
for controlling many confounding variables 
simultaneously.

● But stratified analysis should be applied at first.
● The regression results should be presented in the 

published work or final report only to the extent 
that they represent an important refinement of the 
findings.
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