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The roles of statistics in epidemiologic study

● 1st role = Measuring variability to assess the role of chance
→ Dual meanings in the word “chance”
– Outcome of a random process = Unpredictable under any 

circumstances
● The coin-toss is usually considered as such random process, 

the result is completely unpredictable
– Not easily predictable but are not necessarily random phenomena

● If we have sufficient information about the initial conditions and 
the forces applied to the coin, the result of flipping coin can be 
predicted (Since usually we don’t have such information, it’s 
considered as randomizing event).  Some individuals can 
predict flipping coins after practices enough to predict the result

● If we learn more about the source of error in a body of data, we 
can reduce errors that may appear random at first (“Physicists 
tell us that we will never be able to explain all components of 
error” means Heisenberg’s uncertainty principle [see, https://ww
w.youtube.com/watch?v=TQKELOE9eY4]

https://www.youtube.com/watch?v=TQKELOE9eY4
https://www.youtube.com/watch?v=TQKELOE9eY4


The roles of statistics in epidemiologic study

● 2nd role = Estimating effects after correcting for biases such as 
confounding

● Among those two roles, this chapter address the former.
– Random error is variability.  In cohort studies, some of the 

variability in the outcome is random error, much of variation may 
reflect hidden biases, unmeasured, even undiscovered.

– The latter is addressed in Chapter 10 and 12.



Precision of estimation

● The analysis of data should report the magnitude of that 
epidemiologic quantity and portray the degree of precision with 
which it is measured
– (eg.) Case-control study may be undertaken to estimate the 

IRR between the use of cellular phone and the occurrence of 
brain cancer

● The report should present a clear estimate of IRR such as 
IRR=2.5 – such estimate shown as single value = “point 
estimate”

● To show precision, a “confidence interval” (a range of values 
around the point estimate) is used. → Wide confidence 
interval = low precision, narrow confidence interval = high 
precision



POINT ESTIMATES, CONFIDENCE 
INTERVALS

● Point estimate (being a single value) cannot express the statistical variation 
(random error)

● Large study → estimation process is comparatively precise → little random 
error

● Small study → less precision, more random error
● Confidence interval: The amount of random error in the estimate

– A given confidence interval is tied to an arbitrarily set level of confidence 
(eg., 95%, 90%, …)

– Statistical definition: The level of confidence is set to 95% →  If the data 
collection and analysis could be replicated many times and the study were 
free of bias, the confidence interval would include within it the correct 
value of the measure 95% of the time.

– The statistical definition presumes (1) the difference among replication is 
only caused by chance, (2) variability in the data is adequately described 
by a statistical model without any bias (or bias is completely controlled) → 
unrealistic even in randomized controlled trials

– Practical meaning: A rough estimate of the statistical variability (actually 
random error) in a set of data



P VALUES

● The confidence interval is calculated from the same equations that are 
used to generate another commonly reported statistical measure, the P 
value (the statistic used for statistical hypothesis testing).

● The P value is calculated in relation to a specific hypothesis (usually 
null hypothesis = there is no relation between exposure and disease)
– For RR measure, null hypothesis is RR=1.0

● For RD measure, null hypothesis is RD=0
– The P value represents probability (under the condition that the null 

hypothesis is true, the study is free of bias, and the observations are 
independent each other) that the data obtained in the study would 
demonstrate an association as far from the null hypothesis or farther 
than what was actually obtained. → The required condition is 
seldom met, so that the P value is not a meaningful probability.  
Instead, a measure of relative consistency between the null 
hypothesis and the data in hand.

– More specifically, if a P value were as small as 0.01, it would mean 
that the data were not very consistent with the null hypothesis.



STATISTICAL HYPOTHESIS 
TESTING VERSUS ESTIMATION

● Often a P value is used to determine the presence or absence of 
statistical significance.  Statistical significance is sometimes considered 
as meaningful term, but only means whether the P value is less than 
some arbitrary value (almost always 0.05).

● Statistical hypothesis testing is used to describe the process of deciding 
whether to reject or not to reject a specific hypothesis (usually null 
hypothesis).
– If an analysis gives a result of statistically significant, the null 

hypothesis is rejected as false.
– If a result is not statistically significant, it means that the null 

hypothesis cannot be rejected.  It doesn’t mean that the null 
hypothesis is correct.

– The declaration of “statistically significant” or “not significant” is less 
informative than giving a P value.

– Separation of the information on strength of relation and precision is 
important.  Thus both point estimates and precision information (P 
value or confidence interval) are needed.



P-value functions = Confidence interval functions: See R code,
https://minato.sip21c.org/epispecial/codes-for-Chapter8.R

● P-value function (= confidence interval 
function) enlarges on the concept of the 
P value.

● Instead of testing only the null 
hypothesis, we can also calculate a P 
value for a range of other hypothesis.
– Consider RR ranging from 0 to 

infinity, equaling to 1.0 if the null 
hypothesis is correct.

– We can calculate infinite number of 
P values that test every possible 
value of RR.

– If we do so and plot the result, it 
becomes P-value function.

● (eg. Figure 8-1) The ordinary P value is 
0.08.  Point estimate of OR is 3.2 (In 
main text, it’s written a RR, but actually 
OR).  Though P value is larger than 
0.05, P-value function in Figure 8-1 
makes it clear that there is a strong 
association in the data.  Since the P 
values are same for RR=1 and 
RR=10.5, there is no reason to prefer 
the interpretation of RR=1 over the 
interpretation of RR=10.5.

Table 8-1.  Case-control data for congenital heart 
disease and chlordiazepoxide use in early 
pregnancy

Chlordiazepoxide use

Yes No Total

Cases 4 386 390

Controls 4 1250 1254

Total 8 1636 1644

OR = (4/386)/(4/1250) = 1250/386 = 3.2

Figure 8-1

https://minato.sip21c.org/epispecial/codes-for-Chapter8.R


R code to draw Fig. 8-1
if !require(fmsb) { install.packages("fmsb")

 library(fmsb) }

# Figure 8-1

TAB1 <- matrix(c(4, 4, 386, 1250), 2)

T8.1 <- pvalueplot(TAB1, plot.OR=TRUE, plot.log=TRUE,
       xrange=c(0.1, 100))

res <- oddsratio(TAB1)

segments(1, 0, 1, 1, lty=1) # vertical line

segments(0.1, res$p.value, 100, res$p.value, lty=2)

text(res$estimate, 1, "point estimate")

text(1, res$p.value, sprintf("p-value=%3.2f", res$p.value))

# definition of pvalueplot()
function (XTAB, plot.OR = FALSE, plot.log = FALSE, 
          xrange = c(0.01, 5), add = FALSE, ...) 
{   x.a <- XTAB[1, 1]
    x.b <- XTAB[1, 2]
    x.c <- XTAB[2, 1]
    x.d <- XTAB[2, 2]
    x.N1 <- sum(XTAB[, 1])
    x.N0 <- sum(XTAB[, 2])
    cp <- c(1:9/1000, 1:9/100, 10:90/100, 0.9+1:9/100, 0.99+1:9/1000)
    cpx <- c(cp, 1, rev(cp))
    cpy <- c(cp/2, 0.5, 0.5 + cp/2)
    cRR <- exp(log(x.a * x.N0/x.b/x.N1) + 
           qnorm(cpy) * sqrt(1/x.a - 1/x.N1 + 1/x.b - 1/x.N0))
    cOR <- exp(log(x.a * x.d/x.b/x.c) + 
           qnorm(cpy) * sqrt(1/x.a + 1/x.b + 1/x.c + 1/x.d))
    if (plot.OR) { rval <- data.frame(OR = cOR, p.value = cpx) }
    else { rval <- data.frame(RR = cRR, p.value = cpx) }
    OpLog <- ifelse(plot.log, "x", "")
    if (add) { lines(rval, ...) }
    else { plot(rval, type = "l", xlim = xrange, log = OpLog, ...) }
    return(rval) }

Figure 8-1



P-value functions (cont’d)

● Table 8-2 is the data with large 
sample size.

● Point estimate of OR is 1.1
● A P value for null hypothesis  is 

0.04 (less than 0.05), so 
“significant”.

● The narrowness of the p-value 
function for Table 8-2 reflects the 
larger sample size, which only 
means better precision.

● In Table 8-1, the association is 
“not significant” but the study is 
properly interpreted as raising 
concern about the effect of the 
exposure.  In Table 8-2, the study 
provides reassurance about the 
absence of a strong effect, but 
the significance test gives a 
result that is “significant”.

Table 8-2.  Hypothetical case-control data

Exposure

Yes No Total

Cases 1090 14910 16000

Controls 1000 15000 16000

Total 2090 29910 32000

OR = (1090/14910)/(1000/15000) = 1.1

Data in 
Table 8-2

Data in Table 
8-1
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P-value functions (cont’d)
● The most straightforward way to 

get both messages (strength of 
association and the effect of 
precision) is from the upper and 
lower confidence limits: The two 
numbers that form the 
boundaries to a confidence 
interval.

● The P-value function is closely 
related to the set of all 
confidence intervals for a given 
estimate (see, Figure 8-3, 
showing p-value function as 
nested confidence intervals).

● Instead of showing full P-value 
function, a single confidence interval 
is sufficient to determine the entire P-
value function.

● Confidence intervals are too often not 
interpreted with the image of the 
corresponding P-value function in 
mind.  Sometimes only used to 
determine statistical significance by 
whether the confidence interval 
includes null hypothesis or not.  It’s 
regrettable.

Figure 8-3



Example: Is flutamide effective in 
treating prostate cancer?

● Figure 8-4 shows the result of 
meta-analysis (the calculation of 
pooled odds ratio, OR

MH
 is 

explained in Chapter 10, p.187)
– The result of 10 studies 

showed “not significant” 
protective effect of flutamide 
on prostate cancer 
(OR

MH
=0.89, p>0.05)

– By adding Table 8-3 data (the 
study itself is also “not 
significant”, OR=0.87, 
p=0.14), the result of 11 
studies showed “significant” 
protective effect (OR

MH
=0.89, 

p<0.05), simply due to the 
improvement of precision.

– However, p-value functions 
are almost same.

● https://www.ncbi.nlm.nih.gov/pubmed/7630245 
● https://www.thelancet.com/journals/lancet/article/

PIIS0140-6736(05)74403-2/fulltext 

Table 8-3. Summary of survival data from the 
study of flutamide and prostate cancer

Flutamide Placebo

Died 468 480

Survived 229 205

Total 697 685

OR = 0.87, 95%CI = 0.70-1.10

Figure 8-4N
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effect

10 
studies

11 
studies

https://www.ncbi.nlm.nih.gov/pubmed/7630245
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)74403-2/fulltext
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)74403-2/fulltext


Example: Is St. John’s wort effective in 
relieving major depression?

● Extract of St John’s wort have long 
been used as a folk remedy for 
depression

● Table 8-4 is the result of 
randomized trial only among those 
whose depression was relatively 
less severe

● RR=2.0 means that the use of St. 
John’s wort increased the remission 
in symptoms two times more than 
placebo group.

● The authors misinterpreted the 
result by the lack of statistical 
significance (p=0.14 for null 
hypothesis)

● Figure 8-5 shows that the data 
regarding remissions among the 
less severely affected patients 
hardly support the theory that St. 
John’s wort is ineffective.

● https://jamanetwork.com/journals/
jama/fullarticle/193754 

Table 8-4. Remission among patients with less 
severe depression

St. John’s wort Placebo

Remission 12 5

No remission 47 45

Total 59 50

RR = (12/59)/(5/50) = 2.0, 90%CI: 0.90-4.6

https://jamanetwork.com/journals/jama/fullarticle/193754
https://jamanetwork.com/journals/jama/fullarticle/193754


Simple approaches to calculating confidence 
intervals

● Confidence intervals are usually 
calculated on the presumption 
that the estimate comes from the 
statistical distribution called a 
normal distribution, the usual 
bell-shaped curve.

● Estimates based on the normal 
distribution are always 
reasonable with enough data.  If 
data are sparse, specialized 
formula for small numbers (exact 
methods) are needed.

● A given normal distribution is 
described with regard to its mean 
and its spread (SD)

● For rate difference (or risk difference)
– The formula [8-1] gives 90% confidence 

interval for the rate difference.
– RD

L
 is lower confidence limit

– RD
U
 is upper confidence limit

– 1.645 corresponds to 90% confidence.  
1.96 corresponds to 95% confidence

– In R, qnorm(1-(1-0.90)/2) gives 1.645.  
The normal distribution from qnorm((1-
0.90)/2) to qnorm(1-(1-0.90)/2) includes 
90% of data.

● For rate ratio (or risk ratio or odds ratio)
– The distribution of ratio measures is 

asymmetrically skewed toward large 
values.  To conteract the skewness, it is 
customary to set the confidence limits on 
the log scale (after a logarithmic 
transformation, take exponential again)

– [8-2] gives 90% confidence interval for the 
risk ratio



Statistical significance testing versus 
estimation (box)

● Significance testing is qualitative, not quantitative
● Ideally, a confidence interval should be viewed as a tool to conjure 

up an image of the full P-value function, a smooth curve with no 
boundary on the estimate

● In most instances, there is no need for any test of statistical 
significance to be calculated, reported, or relied on, and we are 
much better off without them.


	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15

