公衆衛生学(14)環境問題と公害

26 January 2018 Minato Nakazawa <minato-nakazawa@umin.net>

環境形成作用と公害・地球環境問題

- ヒトは物理化学的環境条件を改変できる。つまり大きな環境形成作用を もつ
 - ●副作用の軽視が公害につながった
 - ●公害とは、public nuisance(公的生活妨害)「産業活動による環境 汚染が原因で、不特定多数の人々の生活が妨害されること」
 - ●産業革命により環境形成作用が増大したことが一因。英国の煙害防止法は1821年、公衆衛生法は1875年など、早期より対策されたが大気汚染被害は減らず、1956年大気清浄法までロンドンの殺人スモッグ発生
 - ●米国のClean Air Actは1963年
 - ●地球環境問題は、副作用の経路が長く見えにくい。生態系の要素は複雑な相互作用をしているので、意図しない副作用が起こる(間接効果の非決定性)
 - ●森林伐採とマラリア流行
 - ●フロンガス→オゾンホール→オーストラリアの皮膚がん
 - ●等々

足尾鉱毒事件

- ◇江戸幕府直轄だったが廃鉱になっていた足尾銅山 →1877年に古河財閥が譲り受け再開発 →1880年には魚が浮死するなど鉱毒始まる →1889年から電気精錬導入により亜硫酸ガス増大 (銅山側は森林被害は野火が主因であると反論)
- →1890年大洪水により流域に鉱毒被害 →1896年大干魃後の大洪水で鉱業停止運動活発化
- →1897年~1900年農民による政府への陳情とその弾圧, 1901年田中正造による天皇への直訴
- →1907年谷中村廃村, 渡良瀬遊水池の底へ沈む
- →大正期亜硫酸ガス増大、昭和10年代浮遊選鉱法により鉱滓が細かくなり鉱毒増大、戦後も水質汚染継続、1960年頃に植物学者が足尾の荒廃の主な原因が足尾銅山であったことを証明し、1970年代の交渉を経て決着
 - http://d-arch.ide.go.jp/je_archive/english/society/list_11.html
 - http://archive.unu.edu/unupress/unupbooks/uu35ie/uu35ie00.htm
 - $\verb|\coloredge | http://www.maff.go.jp/kanto/nouson/sekkei/kokuei/watarase/rekishi/04_1.html| | http://www.maff.go.jp/kanto/nouson/sekkei/kanto/$
 - http://www.maff.go.jp/kanto/nouson/sekkei/kokuei/watarase/rekishi/04.html

イタイイタイ病

- 富山県神通川流域で、上流の神岡鉱業所から Cd流出→急性毒性の標的臓器は腎臓
- 腎臓障害により体内Cd貯留, 骨のCaを置換 →きわめてもろく, 折れやすい骨
- 最初の患者は1912年, 1940年頃から多発
- 戦前は鉱毒から稲作被害、米摂取による食中毒が疑われていたが、患者自身が差別を恐れて秘匿、 戦後は細菌説、栄養不良説、リウマチ説など、重金属説は軽視
- →1961年地元の萩野昇医師が患者の骨からCd大量検出→1966年認定

 類似疾患は1970年代に姫路市近くを流れる市川流域でも報告あり(Nogawa et al., 1975)。近年
- 類似疾患は1910年1に完成的自動でも減れる自力が減くも報告のが、Nogawa et al., 1913)。 でも鉱山からのCd流出で水田が汚染されCd中毒になる事例はタイや中国で報告あり。
- 富山県立イタイイタイ病資料館 http://www.pref.toyama.jp/branches/1291/index.html
 Tsuchiya K. CAUSATION OF OUCH-OUCH DISEASE (Itai-Itai Byo)-An Introductory Review-. Keio J Med 1969;18(4):195–211. (https://www.jstage.jst.go.jp/article/kjm1952/18/4/18_4_195/_article/-char/ja/)
- And the second s

		Cd	Pb	Zn (7/1)
Slightly endemic (Ohsawano)	Av. Range	10.3 (4~18)	11.2 (0~18)	293 (175~565
Non-endemic (Ohta)	Av. Range	5.7 (0~11)	15.2 (3~29)	256 (165~325
Suspects in endemic	Av. Range	9.3 (3~22)	14.0 (3~30)	189 (62~445
Normal in control area	Av. Range	2.6	11.4	214

環境問題と公害(準備)……環境とは?

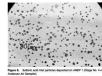
- ●主体あっての「環境」
- ●生物にとっての環境
 - ●物理化学的環境=大気,水,放射線,化学物質等
 - ●生物(学)的環境=ヒト,他の生物,ウイルス等
- ●ヒトの特殊性
 - ●他の生物は物理化学的環境条件が生息場所を制限する
 - ●ヒトは物理化学的環境条件を大きく改変できるのでどこ にでも住める □ 環境

環境 反作用 作用 言語·社会組織·技術

日本の公害問題

- 江戸時代~戦前の鉱毒事件は大規模
 - 足尾鉱毒→渡良瀬遊水池を作って谷中村住民を強制退去 (1973年に銅を掘り尽くして閉山,精錬所は1980年代まで操業)
 - 土呂久砒素公害:1920年~1941年(+1955年~1962年) の「亜ヒ焼き」、宮崎県高千穂町土呂久、1923年から健康被害、1990年和解
- 戦後は4大公害訴訟が代表的
 - 水俣病:熊本県水俣湾周辺,メチル水銀への慢性曝露による中枢神経症状,原因究明に長い年月がかかった
 - 新潟水俣病:新潟県阿賀野川流域、メチル水銀への慢性曝露による中枢神経症状
 - イタイイタイ病:富山県神通川流域,カドミウムの慢性摂取による 腎障害と骨のカルシウム置換
 - 四日市ぜんそく: 三重県四日市市, 硫酸ミストあるいは亜硫酸ガス への慢性曝露によるぜんそく
- 補償の線引き(認定)に明確な基準を作る難しさ(補償≠問題解決)

水俣病の原因認定と裁判


- 「水俣病の判断は、水俣病の各神経症候が他の原因によっても生じるため、メ チル水銀の曝露があった者について、判断の蓋然性を高めるため症候の組み 合わせによる判断条件に基づき行われています。」→原因認定に長時間かか り、かつ認定漏れの問題が起こった。食中毒としての対応もされなかった。
- 熊本県庁web(既に消滅している)http://www.pref.kumamoto.jp/site/548/minamata40.html
- ・水俣病総合研究センター報告書 http://www.nimd.go.jp/syakai/webversion/houkokushotop.html

四日市喘息

- 四日市市の工場排ガス中の硫酸ミスト,大気中に溜まった亜硫酸ガスへの慢性曝露による中毒
- 1955年9月から石油関連企業が大規模活動開始→降下煤塵は少なかったので目には見えなかったが、亜硫酸ガス、硫化水素、炭化水素、窒素酸化物濃度が高い大気汚染悪化
- 1962年頃から四日市市に激しい喘息症状を呈する患者多発 「四日市喘息」→1966年損害賠償請求訴訟→1971年原告勝訴
- 喘息は大気汚染がなくても発生するので、疫学的因果関係(乳幼児と50歳以上の喘息発生率が亜硫酸ガス濃度と相関:右中図)が認められた意義は大きい→現在は大気汚染は解決Yoshida K, et al. Industrial Health. 1964;2(2):87–94. https://www.jstage.jst.go.jp/article/indhealth1963/2/2/2_2_87/article
- 濃縮硫酸ミストの発生による喘息リスクの可能性 Kitagawa T. Journal of the Air Pollution Control Association. 1984 Jul; 34(7):743-6. https://doi.org/10.1080/00022470.1984.10465807
- 1965-1988の登録患者の1975-2000のCOPDと喘息による死 亡率の追跡データをみると、三重県全体より四日市市居住者の 方が有意に高かった(Guo P, et al. Environmental Health. 2008 Feb;7:8. https://doi.org/10.1186/1476-069X-7-8)

典型7公害と対策法制

- 大気の汚染→大気汚染防止法
- 水質の汚濁→水質汚濁防止法,下水道法,水道法
- 土壌の汚染→土壌汚染防止法
- 騒音→騒音規制法
- 振動→振動規制法
- <u>地盤沈下</u>→地下水の保全が必要なので、「工業用水法」「建築 物用地下水の 採取の規制に関する法律」
- 悪臭→悪臭防止法
- 公害対策の大枠として「公害対策基本法」「公害被害者救済法」
- 環境保全の大枠として「環境基本法」「環境影響評価法」

アスベスト肺・中皮腫

- 元々は炭鉱夫や建設労働者の職業病であり、産業衛生の 問題と思われてきた
- 2005年5月. クボタ旧神崎工場周辺住民3名の中皮腫が工 場から飛散したアスベストに由来することをクボタ自身が認 め見舞金を出した 「クボタ・ショック」=公害問題という認識
- 2010年9月末時点で住民の救済金支払い請求者(遺族含 む)は227人(うち死亡156人)
- 検出法に課題あり。胸膜肥厚斑はX線画像では検出困難、 環境中アスベストは種類により方法が異なる、等
- アスベストは広く建材として使われたので、震災瓦礫の影響 が大(ひょうご労働安全衛生センター他『震災とアスベスト』 アットワークス, 税別1,200円, ISBN978-4-939042-64-5)

廃棄物(waste)の問題

- 廃棄物は、人の生活や経済活動に伴って発生する(zero-wasteは きわめて困難)
 - 近年は難分解性物質(PCB等)や毒物の蓄積が問題
- 都市環境で増えやすい
 - 農村では堆肥の原料となる生ゴミや屎尿
 - 多様な物資の集積
 - 多様な産業からの産業廃棄物
- 農村部でも大量生産を目的とした機械化、化学肥料、農薬の普及 に伴い深刻化(人や家畜の屎尿)
 - →環境衛生面から法規制が必要に

The Love Canal Disaster

➢ニューヨーク州ナイヤガラ瀑布近くのラブ運河への有害化学物質の投棄が続いたことにより周辺住民の染色体異常や発がんが増え、集団移住 **≻**Sources

- > (NY Times) https://www.youtube.com/watch?v=Kjobz14i8kM
- (Tufts ENVS タフツ大学の学部生4人のチームによる環境生物学のプロジェクト) https://www.youtube.com/watch?v=3iSFgZ-SlaU

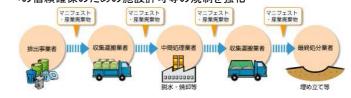
基本法の移行(1993年)

- 1993年に「環境基本法の施行に伴う関係法律の整備等に関する法律」の第一条で、「公害対策基本法(昭和四十二年法律第百三十二号)は、廃止する。」とされた。
 - (1) 目的の改正:「生活環境の保全については、経済の健全な発展との調和が図られるようにするものとする」ー 「福祉なくして成長なし」一「国民が健康で文化的な生活を確保するうえにおいて公害の防止がきわめて重要である」
 (2) 公害の定義の追加:「土壌の汚染」の追加,「水質の汚濁」の定義の拡大(底質の悪化を含むように)
- (3) 廃棄物処理対策:事業者責務の明確化,環境衛生上支障のない処分のための公共処理施設の整備
- (4) 自然環境の保護:狭い意味の生活環境の保全のみでなく、広く緑地の保全等自然環境についてその質を高度に 保つ必要があることを明確化
- (5) 環境基準の「あてはめ」の委任:環境基準が2種類以上あって地域または水域ごとに基準を変える場合、その権 限は都道府県知事に委任
- (6) 都道府県公害対策審議会の必置制:審議会の乱立を回避するため
- 環境基本法(1993年制定,何度も更新されている)

http://elaws.e-gov.go.jp/search/elawsSearch/elaws search/lsg0500/detail?lawId=405AC0000000091

- 第一条 この法律は、環境の保全について、基本理念を定め、並びに国、地方公共団体、事業者及び国民の責務を明らかにするとともに、環境の保全に関する施策の基本となる事項を定めることにより、環境の保全に関する施策 を総合的かつ計画的に推進し、もって現在及び将来の国民の健康で文化的な生活の確保に寄与するとともに人類 の福祉に貢献することを目的とする。
- 第二条で、人の活動により環境に加えられる影響であって、環境の保全上の支障の原因となるおそれのあるもの」を環境負債「人の活動による地球全体の温暖化又はオソン層の破壊の進行、海洋の汚染、野生生物の種の減少その他の地球の全体又はその広範な部分の環境に影響を及ぼす事態に係る環境の保全であって、人類の福祉に 資献するとともに国民の健康で文化的な生活の確保に寄与するものと**始寒娥境保全**・「環境の保全上の支障のうち、事業活動その他の人の活動に伴って生ずる相当範囲にわたる大気の汚染、水質の汚濁、水質以外の水の状態 又は水底の底質が悪化することを含む。第二十一条第一項第一号において同じ。)、土壌の汚染、騒音、振動、地環盤の沈下(鉱物の掘採のための土地の掘削によるものを除。。以下同じ。)及び悪臭によって、人の健康又は生活環 境(人の生活に密接な関係のある財産並びに人の生活に密接な関係のある動植物及びその生育環境を含む。以下 同じ。)に係る被害が生ずること」を公書と定義している

流出事故


- 食品製造ラインにおける混入と流通による急性中毒
 - カネミ油症事件,森永ヒ素ミルク事件等
- 毒物が事故で環境中に流出し、ヒトに急性中毒が発生
 - セベソ事件,ボパール農薬流出事件
- 毒物が事故で環境中に流出し、環境が居住不適になった り,作物や家畜が食用不適になったりした事例
 - チェルノブイリ原発事故, 福島原発事故
- 毒物が事故で環境中に流出し,野生生物に影響が出て生物 多様性が減少した事例 (→地球環境問題として)
 - バルディーズ号に代表されるタンカー座礁事故,メキシコ湾の海底油田 からの原油流出

海外でも都市の廃棄物は問題

- 中世のロンドンやパリの道路がゴミで溢れていたのはよく知られて
- 米国Love Canal (ラブ運河)への毒物投棄による健康被害
- 現代の途上国の都市も道路はゴミで溢れているところが多い(購入 物資の容器等も村で果物の皮を捨てていたのと同じ感覚でポイ捨
- 途上国では、都市近郊や都市内のスラムに廃棄物(輸入された eWasteを含む)が集積するが、そこから再資源化可能な物資を掘り 出して売る貧困層が存在
- 廃棄物内の毒物に曝露して中毒になるケースも多い
 - フィリピンやベトナムの鉛中毒など

日本の廃棄物対策法制の歴史

- 1954年「清掃法」: 市街地区域を中心とする区域内汚物処理を規定
- 廃棄物急増により1970年「<u>廃棄物の処理</u>及び清掃に関する<u>法</u>律」 →多様化により1991年に大改訂
 - →1997年, すべての産業廃棄物へのマニフェスト制度(廃棄物の内容等 を記載した文書「マニフェスト」を同時に運搬し確認する制度)義務づけ →2000年, (1)排出事業者責任の徹底による産業廃棄物の不適正処理 対策、(2)公共関与による安全・適正な施設整備の推進、(3)廃棄物処理 への信頼確保のための施設許可等の規制を強化

3R戦略

- 1980年オイルショック→資源は無限ではない!
- 資源の有効な利用と廃棄物発生抑制,環境保全を目的として「再生資源の利用の促進に関する法律」 (1991年、リサイクル法) →2000年「資源の有効な利用の促進に関する法律(資源有効利用促進 法)」に改訂
- http://law.e-gov.go.jp/htmldata/H03/H03H0048.html
- 廃棄物の適正処理については**「廃棄物処理法」**
- 上記2つの上位の枠組み法として,「循環型社会形成推進基本法」(2000年)
- http://law.e-gov.go.jp/htmldata/H12/H12HO110.html
- 資源循環ハンドブック2017:法制度と3Rの動向(下図―個別リサイクル法―の出典)
- http://www.meti.go.jp/policy/recycle/main/data/pamphlet/pdf/handbook2017.pdf
- 資源の有効利用のための戦略の基本は3R (Reduce, Reuse, Recycle)
- この順で優先(循環型社会形成推進基本法5条及び7条)
- リサイクルもできなければ熱回収, それも無理なら適正処分(同7条)
- cf. 4R (+Refuse), 5R (+Repair) *たぶん概念的に3Rに含まれる

-般廃棄物

- →できる限り再利用・資源化し、残りを衛生的に 処理
- →資源の節約にもなり、廃棄物も減らせる
- 化(コンポスト化), 堆肥化・飼料, リサイク ル等

https://www.youtube.com/watch?v=eym10GGidQU Minato Nakazawa 22

ALRICETON SE 28 TOPOS SE CONTROL **3**

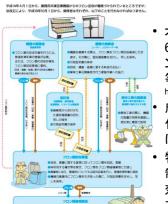
産業廃棄物・災害廃棄物

廃棄物の分類と処理

(出典:資源循環ハンドブック2017:法制度と3Rの動向)

- 最終処分場をどうするかが大問題。減量が必須
- 排出→直接再生+中間処理を経て再生(46%) →中間処理を経て最終処分+直接最終処分(10%)

東京都日の出町の 塚最終処分場。国立市 など周辺市町村からも 受け入れ


化審法(化学物質の審査及び製造等の規制に関する法律) http://www.safe.nite.go.jp/kasinn/pdf/kasinho_houritsu2.pdf

- PCB汚染問題を受けて1973年に制定
- PCB類似の物質を作らせない→ 新規開発物質の安全性の事前審査
- 排出口以外からの環境汚染を防止→製造・輸入・使用段階での規制
- 当初は健康保護の目的のみ→ 2003年改正で動植物への影響も
- 2009年改正で、既存化学物質を含む全ての化学物質を評価の対象 に(優先順位をつけて評価)(2010年、2011年の2段階施行)
 - 主な審査の視点:環境中での分解性、生物への蓄積性、人への毒 性及び生態毒性(長期毒性)
- 当初は有害性のみ着目→改正後は「リスク」に着目し、評価·規制
- ・化学物質は大気や水の循環に乗って世界中に拡散するので,国際 的な規制が必要になる

DDTの功罪

- DDT(dichloro diphenyl trichloro ethane)は非常に有効か つ安価な殺虫剤。シラミ、蚤、蚊に有効なため、チフス、マラ リア、黄熱病の流行を止めた
- 鳥類や爬虫類の卵殻が柔らかくなるなど環境毒性があ り、1970年代に先進国では製造・使用禁止したが消失せ ず。DDT同様に残留性と蓄積性が問題になる物質をPOPs (Persistent Organic Pollutants)として国際的に禁止する流 れ(大気大循環などがあるので, 一国の禁止では不十分) →POPs条約へ
- アフリカのマラリア対策を除けば全面禁止

フロン回収・破壊法

- オゾンホールがきっかけで、2001年 6月22日制定「特定製品に係るフロ ン類の回収及び破壊の実施の確保 等に関する法律」
- http://law.e-gov.go.jp/htmldata/H13/H13HO064.html
- 成層圏に滞留しオゾン層を破壊する 作用が強い「特定フロン」が環境中 に排出されないよう回収する
- 特定フロンの製造・消費・貿易の規 制開始は1987年採択, 1989年発 効のモントリオール議定書から。日 本は1988年加入。

化管法

- 正式名称を「特定<u>化学物質</u>の環境への<u>排出</u>量の<u>把握</u>等及び<u>管理</u>の改善の <u>促進</u>に関する<u>法</u>律」という。
- http://www.meti.go.jp/policy/chemical_management/law/pdf/houreishu.pdf
- OECD勧告を受けて1999年に制定
- PRTR制度とMSDS制度からなる
- PRTR (Pollutant Release and Transfer Register)は「有害性のある多種多 様な化学物質が、どのような発生源から、どれくらい環境中に排出された か、あるいは廃棄物に含まれて事業所の外に運び出されたかというデータを 把握し、集計し、公表する仕組み」
- MSDS(Material Safety Data Sheet)は事業者による化学物質の適切な管 理の改善を促進するため、対象化学物質を含有する製品を他の事業者に譲 渡又は提供する際には、その化学物質の性状及び取扱いに関する情報を、 化学物質安全データシート(MSDS)として事前に提供することを義務づける
- 平成22年4月1日から、事業者として医療業も含まれるようになった 定された562物質について、メーカーから病院が購入したり、病院が産廃業 者に廃棄を委託する際にMSDSの届け出が必要

化学物質の内分泌攪乱作用への対策

- 環境省の取り組み: SPEED'98→ExTEND2005→EXTEND2010 http://www.env.go.jp/chemi/end/extend2010.html http://www.env.go.jp/chemi/end/extend2010/seminar/seminar 2011.html
- DDTの慢性毒性は古くから指摘。DESシンドロームも1970年。クローズアップされたのは1996年の「奪われし未来」。
- 1996年度厚生科学研究事業「化学物質のクライシスマネジメント に関する研究班」、1997年環境庁「外因性内分泌攪乱化学物質 問題に関する研究班」、1998年「環境ホルモン戦略計画 SPEED'98」、1999年ダイオキシン類対策特別措置法
- 1998年6月環境ホルモン学会(正式名:日本内分泌撹乱化学物質 学会)発足。http://www.jsedr.jp/
- SPEED'98で検討した物質の中に、ヒトの内分泌を攪乱する明白な証拠が出たものはほとんど無かった

エコチル調査

・化学物質等の環境要因の子供への影響を調べる調査

http://www.env.go.jp/chemi/ceh/index.html

例2~地球温暖化

● 化石燃料使用による二酸化炭素濃度急増

が国における 取り組み

2003年~(毎年開催) 小児等の環境保健に関する 国際シンボジウム開催

2006年 小児の環境保健に関する懇談会 の提言 第三次環境基本計画

2007年 21世紀環境立国戦略 新規出生コーホート調査の立上げ の報告

子どもの類別性への考虑も含め、 安全性情報の収集、把接及びモニタリ ンパの味い

2007年 小児環境保健疫学調査に関する 検討会の設置

2008年 子どもの健康と環境に関する 検討会の設置

> |現 |住長・発達に影響を与える

- 濃度の絶対値は過去にもあった水準だが増加速度が速いため影響大
- 温室効果ガスとしては二酸化炭素の他、メタン、フロン、亜酸化窒素なども含まれ、これらも増加。メタンは資源開発や家畜増産によっても増加する
- 温暖化にともなう海面上昇も問題視されている
- 疾病分布の変化も問題と言われる
- IPCC(気候変動に関する政府間パネル; 2014年にAR5が発表された)や、COP(気候変動枠組み条約締約国会議)で対策
 - http://www.env.go.jp/earth/ipcc/5th/
 - http://www.jccca.org/ipcc/about/index.html
 - http://www.ipcc.ch/

(予) 世界の動向

1997年 子どもの環境保健に関する 8カ国環境大臣会合「マイアミ宣言」

2002年 持続可能な開発に関する世界 サミット (WSSN)

2006年 国際科学物質管理戦略 (SAICM)

子ども、 助児を彼らの将来の生命を 描なう化学物質の機器から守る

子どもの健康と環境に関する大規模な 疫学調査を各国が協力して取り始むこ と指令費

主な各国の取り組み 米面: そともの影響を考えした安全を選択と クリントン大統領の大統領を「政権経済 リスクと安全リスクに対する」、社会を は、本

2020年回報 化学物質の生産・消費に伴う人の健康と 環境への影響を最小化(WSSD)

化学物質の生産・消費に伴う。 健康への影響を最小化

国際協調と調和の促進(続き)

- PIC条約(国際貿易の対象となる特定の有害な化学物質及び駆除剤についての事前のかつ情報に基づく同意の手続に関するロッテルダム条約): 1998年採択。化学物質の危険有害性に関する情報が乏しい国への輸出によって、その国の人の健康や環境への悪影響が生じることを防止するため、輸出国が特定の有害物質の輸出に先立って輸入国政府の輸入意思を確認した上で輸出を行うこと等を規定
- GHS (The Global Harmonized System): 化学物質を国際的に規制するためには、国際的に調和された化学物質の分類・表示方法が必要であるとして2003年7月に国連で採択。すべての化学物質を対象とし、危険有害性に基づく分類が基本
- REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals): EUの新しい化学品規制。2008年6月1日から運用開始。EUで物質(調剤中の物質 も該当)を年間1トン以上製造又は輸入する事業者に対し、登録手続義務付け
- RoHS指令(DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment): 有害物質の電気電子機器への使用を制限。2006年7月1日施行。2011年改正(2011/65/EU:リスボン条約)鉛、水銀、カドミウム、六価クロム、PBB (polybrominated biphenyls)、PBDE (polybrominated diphenyl ethers)の6物質を使用制限(EUIこ上市する電気電子機器にこれら6物質を含んではならない)。2014年7月22日以降医療機器、2016年同日以降体外診断用医療機器も含む。
- 2012年に開催されたRIO+20ではsustainability強調

ダイオキシン類対策特別措置法

- ・世論の盛り上がりを受けて1999年に制定。同年環境省が発表した基本的考え方では、ダイオキシン問題は将来に渡って国民の健康を守り環境を守るために内閣をあげて取り組みを一層強化しなければならないものであり、4年以内に排出総量を9割削減、所沢で見られたような風評被害への対策、TDI(耐容一日摂取量)を始めとするする各種基準作りなどが緊急に必要であるとされた→で、どうなった?
- 2000年末に法施行 → 一般廃棄物や産廃焼却炉の厳しい排ガス規制開始 → 2003年ダイオキシン類曝露による健康リスク改善無し
- (1)リスクの大きさが体内に蓄積されているダイオキシンに依存
 - (2)ダイオキシンの生物学的半減期が長い
- (3)ヒトの体内への主たる経路は食品(魚介類からが7割)
- (4)魚介類中のダイオキシンも環境中残留分の影響大
- (5)ヒトが摂取するダイオキシンの6~7割はco-PCB
- (6)焼却炉排ガスのダイオキシン類のうちco-PCBは5%程度(co-PCB源は捨てられたPCB製品かもしれない)
- (7)環境中の残留PCDD/Fsは過去に使われた農薬由来が主
- ⇒排ガス規制は的外れ? ⇒長期的影響は別として、短期的には。
- ・代替リスク回避策としてはディーゼルの排ガス規制が有効 ⇒東京都条例など対策進展

地球環境問題の例~森林減少

- https://www.youtube.com/watch?v=A0pB1qw8SMs
- 森林減少
 - 世界の森林面積は約35億ha。森林減少は約1,100万ha(日本の面積の 1/3)
 - 熱帯で発生。温帯林はやや増加
 - 原因: 材木用伐採, 焼畑や放牧のための伐採, ダムや道路の建設に伴う 伐採, プランテーションのための伐採, 森林火災, 酸性雨による立ち枯れ, 病害虫による立ち枯れ等
 - 影響:生物多様性の減少,地下水位低下,洪水増加(一昨年のタイやミャンマー,昨年のインドやバングラデシュ等),土壌流出,砂漠化等
 - ・(火災の場合)喘息,呼吸器疾患等
 - ITTO(国際熱帯木材機関)ガイドラインやUNFF(国連森林フォーラム)等で対策
 - http://www.itto.int/ja/policypapers_guidelines/
 - http://www.un.org/esa/forests/index.html

地球環境問題対策~国際協調と調和の促進

- 1972年にストックホルムで国連主催の環境問題国際会議が開かれた。並行して民間の国際環境会議も開かれ、宇井純らにより日本の公害問題の総まとめが行われた。公害病患者自身が世界に向けてアピールし、公害の悲惨さが世界中で認識されるようになった。
- ・ 今日の地球環境問題への取り組みは、国連、例えば国連環境開発計画(UNEP)を中心として、各種の政府間パネルや、NGOによって活発に行われている。フロンガス排出を規制するモントリオール議定書(1987年)、IPCC(気候変動に関する政府間パネル)、COP(気候変動枠組み条約締約国会議)、POPs条約(残留性有機汚染物質に関するストックホルム条約)などが有名。
- POPs条約(残留性有機汚染物質に関するストックホルム条約):環境中での残留性、生物蓄積性、人や生物への毒性が高く、長距離移動性が懸念されるPCB, DDT等の残留性有機汚染物質(POPs: Persistent Organic Pollutants)の, (1)製造及び使用の廃絶, (2)排出削減, (3)これらの物質を含む廃棄物等の適正処理等を規定
- 1992年地球サミット(RIO会議)→1995年UNEPで12種類のPOPsを 規制する国際条約策定を求める決議→2001年採択, 2004年に締約 国が50になり発効。日本は2002年に加入。

公害問題と地球環境問題の対比

● 公害問題

- 人的被害がある
- 受益者と被害者がオーバーラップ(違う人もいる)
- 比較的地域局在
- 原因企業が特定しやすい
- 中国, タンザニア, パプアニューギニア等対応は多様

◉ 地球環境問題

- ヒトへの直接被害はない(あるいは見えない)ことも
- 受益者と被害者が同一ではないのが普通
 - 地球規模の大気大循環や潮流の影響
- 少数の犯人を見つけることは難しいため、各国政府の協力のもとに、国際機関が主導して対応