Comparison of location parameters among 3 or more groups of identical individuals

- Comparison of location parameters among 3 or more groups of different individuals \rightarrow One-way ANOVA or Kruskal-Wallis test
- If all groups are composed of the same individuals?
 → Repeated-measures ANOVA or Friedman's test
- Data should be given as wide-format for EZR (Data at different times → Different variables *1 line means 1 individual) Names of time-dependent variables must be given as alphebetical order. If not, rename using [Active data set] [Variables] [Rename variables]
- Flow: Read data → Draw graph → Statistical analysis See, (1) The effects of Group(s), Time, Interaction from ANOVA table, (2) Check sphericity (Null-hypothesis: equal variances among time), (3) If (2) is significant, see G-G or H-F adjustment

Example 2. Changes of plasma inorganic phosphate after OGTT for 33 individuals

- Reading data: [File][Import data][Read Text Data From Flie, Clipboard, or URL] Name: ogtt02, From: URL, Delimiter: tabs URL: http://minato.sip21c.org/ogtt02.txt
- Draw graph of raw data: [Graphs] → [Line graph (Repeated measures)] Repeatedly measured data: T.0, T.0.5, ..., T.5 Grouping variable: GROUP
- 2 GROUPs
 - 1: Control
 - 2: Obesity
- Checking the effect of TIME, GROUP, and interaction

Example 1. Skin electric potential (mV) after various stimuli in 8 individuals

- Read data from: http://minato.sip21c.org/hypno-psycho01.txt
- Draw graph of raw data: [Graphs][Line graph (Repeated measures)] select → calmness, despair, fear, happiness
- Looks not normally distributed. Values are not independent (→ One-way ANOVA is not appropriate). And, the intraindividual factor is not "time".
- Null-hypothesis: Skin electric potentials are not different by the kind of psychological stimuli
- Statistical analysis: [Nonparametric tests] [Friedman test] select → calmness, despair, fear, happiness Friedman chi-squared = 6.45, df = 3, p-value = 0.09166 (NS)

Example 2. (cont'd)

- [Statistical analysis] [Continuous variables] [Repeated measures ANOVA]
- Repeatedly measured data: T.0, T.0.5, ..., T.5 Grouping variable: GROUP
- Univariate Type III Repeated-Measures ANOVA Assuming Sphericity SS num Df Error SS den Df F Pr(>F) (Intercept) 3173.3 1 73.581 $31 \ 1336.9260 < 2.2e-16$ Factor1.GROUP 13.2 1 73.581 31 5.5464 0.02503 36.438 Time 42.3 7 217 35.9602 < 2.2e-16Factor1.GROUP:Time 9.4 7 36.438 217 7.9881 1.255e-08

Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mauchly Tests for Sphericity

Example 2. (cont'd)

- Non-parametric test is still possible
- [Statistical analysis] [Nonparametric test] [Friedman test] Select variables: T0, T0.5, ..., T5
- Friedman chi-squared = 114.8377, df = 7, p-value < 2.2e-16

Repeated or Inter-rater agreement of categorical variables (Chap.13)

- When ordered or categorical variables were measured repeatedly or evaluated by multiple raters (observers), the result can be summarized as two-dimensional cross tabulation.
- However, common statistical testing for two-dimensional cross table like chi-square test or fisher's exact test is completely inadequate, because repeated or inter-rater measurements are clearly not independent.
- We have to test (1) the agreement significantly exceeds the expected one by chance, or (2) the agreement significantly worse than the expected one by chance.
 - (1) can be done by Kappa-statistics
 - (2) can be done by McNemar's test

Example 3. Change of systolic blood pressures (mmHg) after drug admin.

- Read data: http://minato.sip21c.org/sbp01.txt
- Rename the name of variable from T.1 to S1
- Draw graph of raw data Repeatedly measured data: S1, T0, T1, ..., T8
- Friedman test: p=0.029 → SBP significantly changes by time after drug administration.
- Repeated measures ANOVA: [Statistical analysis] [Continuous variables]
 [Repeated measures ANOVA]
 Repeatedly measured data: T0, T1, ..., T5
 * More variables than subjects are not allowed

Kappa-statistics and McNemar's test

•	appa statistics		Test	Retest	
	Please assume the clinical test repeated 2 times, summarized as 2 by 2 cross table.			Positive	Negative
	 The agreement probability Po is (a+d)/(a+b+ 	b=c=0 (Po=1). When o=0). e, expected agreement (b+d)(c+d)/(a+b+c+d)}	Positive	a (=12)	b (=4)
	• If the agreement of the 2 test is perfect, b=c=		Negative	c (=2)	d (=10)
	 the tests completely disagree, a=d=0 (Po=0) If the agreement is completely by chance, exprobability Pe is {(a+c)(a+d)/(a+b+c+d)+(b+c Kappa statistics can be defined as (Po-Pe)/(library(fmsb) 		Testl (+ Testl (-	Test2 (+) Test2 (-) Test1 (+) 12 4	
	Kappa.test(matrix(c(12, 2, 4, 10), 2, 2)) In EZR, [Statistical analysis]>[Accuracy of diagnostic test]>[Kappa statistics for agreement of two tests]		> res <- epi.kappa(.Table, conf. > colnames(res\$kappa) <- gettext > res[1]		
•	McNemar's test				
 Evaluate the significant change of binary variable (pos/neg) between before/after intervention \$kappa est 1 0.5714286 0. 					
	 X²₀ = (b-c)²/(b+c), obeys chi-sq dist with d.f.=1 mcnemar.test(matrix(c(a, c, b, d), 2, 2)) 	Continuous variables Con Nonparametric tests On Survival analysis Cor Accuracy of diagnostic test On Matched-pair analysis Ent Metaanalysis And metargeression Cre Calculate sample size Cor Calculate sample size Cor	requency distributions onfidence interval for a proportion ne sample proportion test onfidence interval for a difference between two proportions onfidence interval for a ratio of two proportions		
	By EZR, from raw data, see right. Acta Calcu		ter and analyze two-way table reate two-way table and compare two proportions (Fisher's exact test) ompare proportions of two paired samples (McNemar test) mpare proportions of more than two paired samples (Cochran Q test)		